| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285 | import { getMinHashLength, mapHashToField } from './modular.js';import { bitLen, bitGet, ensureBytes } from './utils.js';// prettier-ignoreimport { createHasher } from './hash-to-curve.js';import { weierstrassPoints, } from './weierstrass.js';// prettier-ignoreconst _2n = BigInt(2), _3n = BigInt(3);export function bls(CURVE) {    // Fields are specific for curve, so for now we'll need to pass them with opts    const { Fp, Fr, Fp2, Fp6, Fp12 } = CURVE.fields;    const BLS_X_LEN = bitLen(CURVE.params.x);    // Pre-compute coefficients for sparse multiplication    // Point addition and point double calculations is reused for coefficients    function calcPairingPrecomputes(p) {        const { x, y } = p;        // prettier-ignore        const Qx = x, Qy = y, Qz = Fp2.ONE;        // prettier-ignore        let Rx = Qx, Ry = Qy, Rz = Qz;        let ell_coeff = [];        for (let i = BLS_X_LEN - 2; i >= 0; i--) {            // Double            let t0 = Fp2.sqr(Ry); // Ry²            let t1 = Fp2.sqr(Rz); // Rz²            let t2 = Fp2.multiplyByB(Fp2.mul(t1, _3n)); // 3 * T1 * B            let t3 = Fp2.mul(t2, _3n); // 3 * T2            let t4 = Fp2.sub(Fp2.sub(Fp2.sqr(Fp2.add(Ry, Rz)), t1), t0); // (Ry + Rz)² - T1 - T0            ell_coeff.push([                Fp2.sub(t2, t0), // T2 - T0                Fp2.mul(Fp2.sqr(Rx), _3n), // 3 * Rx²                Fp2.neg(t4), // -T4            ]);            Rx = Fp2.div(Fp2.mul(Fp2.mul(Fp2.sub(t0, t3), Rx), Ry), _2n); // ((T0 - T3) * Rx * Ry) / 2            Ry = Fp2.sub(Fp2.sqr(Fp2.div(Fp2.add(t0, t3), _2n)), Fp2.mul(Fp2.sqr(t2), _3n)); // ((T0 + T3) / 2)² - 3 * T2²            Rz = Fp2.mul(t0, t4); // T0 * T4            if (bitGet(CURVE.params.x, i)) {                // Addition                let t0 = Fp2.sub(Ry, Fp2.mul(Qy, Rz)); // Ry - Qy * Rz                let t1 = Fp2.sub(Rx, Fp2.mul(Qx, Rz)); // Rx - Qx * Rz                ell_coeff.push([                    Fp2.sub(Fp2.mul(t0, Qx), Fp2.mul(t1, Qy)), // T0 * Qx - T1 * Qy                    Fp2.neg(t0), // -T0                    t1, // T1                ]);                let t2 = Fp2.sqr(t1); // T1²                let t3 = Fp2.mul(t2, t1); // T2 * T1                let t4 = Fp2.mul(t2, Rx); // T2 * Rx                let t5 = Fp2.add(Fp2.sub(t3, Fp2.mul(t4, _2n)), Fp2.mul(Fp2.sqr(t0), Rz)); // T3 - 2 * T4 + T0² * Rz                Rx = Fp2.mul(t1, t5); // T1 * T5                Ry = Fp2.sub(Fp2.mul(Fp2.sub(t4, t5), t0), Fp2.mul(t3, Ry)); // (T4 - T5) * T0 - T3 * Ry                Rz = Fp2.mul(Rz, t3); // Rz * T3            }        }        return ell_coeff;    }    function millerLoop(ell, g1) {        const { x } = CURVE.params;        const Px = g1[0];        const Py = g1[1];        let f12 = Fp12.ONE;        for (let j = 0, i = BLS_X_LEN - 2; i >= 0; i--, j++) {            const E = ell[j];            f12 = Fp12.multiplyBy014(f12, E[0], Fp2.mul(E[1], Px), Fp2.mul(E[2], Py));            if (bitGet(x, i)) {                j += 1;                const F = ell[j];                f12 = Fp12.multiplyBy014(f12, F[0], Fp2.mul(F[1], Px), Fp2.mul(F[2], Py));            }            if (i !== 0)                f12 = Fp12.sqr(f12);        }        return Fp12.conjugate(f12);    }    const utils = {        randomPrivateKey: () => {            const length = getMinHashLength(Fr.ORDER);            return mapHashToField(CURVE.randomBytes(length), Fr.ORDER);        },        calcPairingPrecomputes,    };    // Point on G1 curve: (x, y)    const G1_ = weierstrassPoints({ n: Fr.ORDER, ...CURVE.G1 });    const G1 = Object.assign(G1_, createHasher(G1_.ProjectivePoint, CURVE.G1.mapToCurve, {        ...CURVE.htfDefaults,        ...CURVE.G1.htfDefaults,    }));    function pairingPrecomputes(point) {        const p = point;        if (p._PPRECOMPUTES)            return p._PPRECOMPUTES;        p._PPRECOMPUTES = calcPairingPrecomputes(point.toAffine());        return p._PPRECOMPUTES;    }    // TODO: export    // function clearPairingPrecomputes(point: G2) {    //   const p = point as G2 & withPairingPrecomputes;    //   p._PPRECOMPUTES = undefined;    // }    // Point on G2 curve (complex numbers): (x₁, x₂+i), (y₁, y₂+i)    const G2_ = weierstrassPoints({ n: Fr.ORDER, ...CURVE.G2 });    const G2 = Object.assign(G2_, createHasher(G2_.ProjectivePoint, CURVE.G2.mapToCurve, {        ...CURVE.htfDefaults,        ...CURVE.G2.htfDefaults,    }));    const { ShortSignature } = CURVE.G1;    const { Signature } = CURVE.G2;    // Calculates bilinear pairing    function pairing(Q, P, withFinalExponent = true) {        if (Q.equals(G1.ProjectivePoint.ZERO) || P.equals(G2.ProjectivePoint.ZERO))            throw new Error('pairing is not available for ZERO point');        Q.assertValidity();        P.assertValidity();        // Performance: 9ms for millerLoop and ~14ms for exp.        const Qa = Q.toAffine();        const looped = millerLoop(pairingPrecomputes(P), [Qa.x, Qa.y]);        return withFinalExponent ? Fp12.finalExponentiate(looped) : looped;    }    function normP1(point) {        return point instanceof G1.ProjectivePoint ? point : G1.ProjectivePoint.fromHex(point);    }    function normP1Hash(point, htfOpts) {        return point instanceof G1.ProjectivePoint            ? point            : G1.hashToCurve(ensureBytes('point', point), htfOpts);    }    function normP2(point) {        return point instanceof G2.ProjectivePoint ? point : Signature.fromHex(point);    }    function normP2Hash(point, htfOpts) {        return point instanceof G2.ProjectivePoint            ? point            : G2.hashToCurve(ensureBytes('point', point), htfOpts);    }    // Multiplies generator (G1) by private key.    // P = pk x G    function getPublicKey(privateKey) {        return G1.ProjectivePoint.fromPrivateKey(privateKey).toRawBytes(true);    }    // Multiplies generator (G2) by private key.    // P = pk x G    function getPublicKeyForShortSignatures(privateKey) {        return G2.ProjectivePoint.fromPrivateKey(privateKey).toRawBytes(true);    }    function sign(message, privateKey, htfOpts) {        const msgPoint = normP2Hash(message, htfOpts);        msgPoint.assertValidity();        const sigPoint = msgPoint.multiply(G1.normPrivateKeyToScalar(privateKey));        if (message instanceof G2.ProjectivePoint)            return sigPoint;        return Signature.toRawBytes(sigPoint);    }    function signShortSignature(message, privateKey, htfOpts) {        const msgPoint = normP1Hash(message, htfOpts);        msgPoint.assertValidity();        const sigPoint = msgPoint.multiply(G1.normPrivateKeyToScalar(privateKey));        if (message instanceof G1.ProjectivePoint)            return sigPoint;        return ShortSignature.toRawBytes(sigPoint);    }    // Checks if pairing of public key & hash is equal to pairing of generator & signature.    // e(P, H(m)) == e(G, S)    function verify(signature, message, publicKey, htfOpts) {        const P = normP1(publicKey);        const Hm = normP2Hash(message, htfOpts);        const G = G1.ProjectivePoint.BASE;        const S = normP2(signature);        // Instead of doing 2 exponentiations, we use property of billinear maps        // and do one exp after multiplying 2 points.        const ePHm = pairing(P.negate(), Hm, false);        const eGS = pairing(G, S, false);        const exp = Fp12.finalExponentiate(Fp12.mul(eGS, ePHm));        return Fp12.eql(exp, Fp12.ONE);    }    // Checks if pairing of public key & hash is equal to pairing of generator & signature.    // e(S, G) == e(H(m), P)    function verifyShortSignature(signature, message, publicKey, htfOpts) {        const P = normP2(publicKey);        const Hm = normP1Hash(message, htfOpts);        const G = G2.ProjectivePoint.BASE;        const S = normP1(signature);        // Instead of doing 2 exponentiations, we use property of billinear maps        // and do one exp after multiplying 2 points.        const eHmP = pairing(Hm, P, false);        const eSG = pairing(S, G.negate(), false);        const exp = Fp12.finalExponentiate(Fp12.mul(eSG, eHmP));        return Fp12.eql(exp, Fp12.ONE);    }    function aggregatePublicKeys(publicKeys) {        if (!publicKeys.length)            throw new Error('Expected non-empty array');        const agg = publicKeys.map(normP1).reduce((sum, p) => sum.add(p), G1.ProjectivePoint.ZERO);        const aggAffine = agg; //.toAffine();        if (publicKeys[0] instanceof G1.ProjectivePoint) {            aggAffine.assertValidity();            return aggAffine;        }        // toRawBytes ensures point validity        return aggAffine.toRawBytes(true);    }    function aggregateSignatures(signatures) {        if (!signatures.length)            throw new Error('Expected non-empty array');        const agg = signatures.map(normP2).reduce((sum, s) => sum.add(s), G2.ProjectivePoint.ZERO);        const aggAffine = agg; //.toAffine();        if (signatures[0] instanceof G2.ProjectivePoint) {            aggAffine.assertValidity();            return aggAffine;        }        return Signature.toRawBytes(aggAffine);    }    function aggregateShortSignatures(signatures) {        if (!signatures.length)            throw new Error('Expected non-empty array');        const agg = signatures.map(normP1).reduce((sum, s) => sum.add(s), G1.ProjectivePoint.ZERO);        const aggAffine = agg; //.toAffine();        if (signatures[0] instanceof G1.ProjectivePoint) {            aggAffine.assertValidity();            return aggAffine;        }        return ShortSignature.toRawBytes(aggAffine);    }    // https://ethresear.ch/t/fast-verification-of-multiple-bls-signatures/5407    // e(G, S) = e(G, SUM(n)(Si)) = MUL(n)(e(G, Si))    function verifyBatch(signature, messages, publicKeys, htfOpts) {        // @ts-ignore        // console.log('verifyBatch', bytesToHex(signature as any), messages, publicKeys.map(bytesToHex));        if (!messages.length)            throw new Error('Expected non-empty messages array');        if (publicKeys.length !== messages.length)            throw new Error('Pubkey count should equal msg count');        const sig = normP2(signature);        const nMessages = messages.map((i) => normP2Hash(i, htfOpts));        const nPublicKeys = publicKeys.map(normP1);        try {            const paired = [];            for (const message of new Set(nMessages)) {                const groupPublicKey = nMessages.reduce((groupPublicKey, subMessage, i) => subMessage === message ? groupPublicKey.add(nPublicKeys[i]) : groupPublicKey, G1.ProjectivePoint.ZERO);                // const msg = message instanceof PointG2 ? message : await PointG2.hashToCurve(message);                // Possible to batch pairing for same msg with different groupPublicKey here                paired.push(pairing(groupPublicKey, message, false));            }            paired.push(pairing(G1.ProjectivePoint.BASE.negate(), sig, false));            const product = paired.reduce((a, b) => Fp12.mul(a, b), Fp12.ONE);            const exp = Fp12.finalExponentiate(product);            return Fp12.eql(exp, Fp12.ONE);        }        catch {            return false;        }    }    G1.ProjectivePoint.BASE._setWindowSize(4);    return {        getPublicKey,        getPublicKeyForShortSignatures,        sign,        signShortSignature,        verify,        verifyBatch,        verifyShortSignature,        aggregatePublicKeys,        aggregateSignatures,        aggregateShortSignatures,        millerLoop,        pairing,        G1,        G2,        Signature,        ShortSignature,        fields: {            Fr,            Fp,            Fp2,            Fp6,            Fp12,        },        params: {            x: CURVE.params.x,            r: CURVE.params.r,            G1b: CURVE.G1.b,            G2b: CURVE.G2.b,        },        utils,    };}//# sourceMappingURL=bls.js.map
 |