| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425 | 
							- /*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
 
- // Twisted Edwards curve. The formula is: ax² + y² = 1 + dx²y²
 
- import { validateBasic, wNAF } from './curve.js';
 
- import { mod } from './modular.js';
 
- import * as ut from './utils.js';
 
- import { ensureBytes } from './utils.js';
 
- // Be friendly to bad ECMAScript parsers by not using bigint literals
 
- // prettier-ignore
 
- const _0n = BigInt(0), _1n = BigInt(1), _2n = BigInt(2), _8n = BigInt(8);
 
- // verification rule is either zip215 or rfc8032 / nist186-5. Consult fromHex:
 
- const VERIFY_DEFAULT = { zip215: true };
 
- function validateOpts(curve) {
 
-     const opts = validateBasic(curve);
 
-     ut.validateObject(curve, {
 
-         hash: 'function',
 
-         a: 'bigint',
 
-         d: 'bigint',
 
-         randomBytes: 'function',
 
-     }, {
 
-         adjustScalarBytes: 'function',
 
-         domain: 'function',
 
-         uvRatio: 'function',
 
-         mapToCurve: 'function',
 
-     });
 
-     // Set defaults
 
-     return Object.freeze({ ...opts });
 
- }
 
- // It is not generic twisted curve for now, but ed25519/ed448 generic implementation
 
- export function twistedEdwards(curveDef) {
 
-     const CURVE = validateOpts(curveDef);
 
-     const { Fp, n: CURVE_ORDER, prehash: prehash, hash: cHash, randomBytes, nByteLength, h: cofactor, } = CURVE;
 
-     const MASK = _2n << (BigInt(nByteLength * 8) - _1n);
 
-     const modP = Fp.create; // Function overrides
 
-     // sqrt(u/v)
 
-     const uvRatio = CURVE.uvRatio ||
 
-         ((u, v) => {
 
-             try {
 
-                 return { isValid: true, value: Fp.sqrt(u * Fp.inv(v)) };
 
-             }
 
-             catch (e) {
 
-                 return { isValid: false, value: _0n };
 
-             }
 
-         });
 
-     const adjustScalarBytes = CURVE.adjustScalarBytes || ((bytes) => bytes); // NOOP
 
-     const domain = CURVE.domain ||
 
-         ((data, ctx, phflag) => {
 
-             if (ctx.length || phflag)
 
-                 throw new Error('Contexts/pre-hash are not supported');
 
-             return data;
 
-         }); // NOOP
 
-     const inBig = (n) => typeof n === 'bigint' && _0n < n; // n in [1..]
 
-     const inRange = (n, max) => inBig(n) && inBig(max) && n < max; // n in [1..max-1]
 
-     const in0MaskRange = (n) => n === _0n || inRange(n, MASK); // n in [0..MASK-1]
 
-     function assertInRange(n, max) {
 
-         // n in [1..max-1]
 
-         if (inRange(n, max))
 
-             return n;
 
-         throw new Error(`Expected valid scalar < ${max}, got ${typeof n} ${n}`);
 
-     }
 
-     function assertGE0(n) {
 
-         // n in [0..CURVE_ORDER-1]
 
-         return n === _0n ? n : assertInRange(n, CURVE_ORDER); // GE = prime subgroup, not full group
 
-     }
 
-     const pointPrecomputes = new Map();
 
-     function isPoint(other) {
 
-         if (!(other instanceof Point))
 
-             throw new Error('ExtendedPoint expected');
 
-     }
 
-     // Extended Point works in extended coordinates: (x, y, z, t) ∋ (x=x/z, y=y/z, t=xy).
 
-     // https://en.wikipedia.org/wiki/Twisted_Edwards_curve#Extended_coordinates
 
-     class Point {
 
-         constructor(ex, ey, ez, et) {
 
-             this.ex = ex;
 
-             this.ey = ey;
 
-             this.ez = ez;
 
-             this.et = et;
 
-             if (!in0MaskRange(ex))
 
-                 throw new Error('x required');
 
-             if (!in0MaskRange(ey))
 
-                 throw new Error('y required');
 
-             if (!in0MaskRange(ez))
 
-                 throw new Error('z required');
 
-             if (!in0MaskRange(et))
 
-                 throw new Error('t required');
 
-         }
 
-         get x() {
 
-             return this.toAffine().x;
 
-         }
 
-         get y() {
 
-             return this.toAffine().y;
 
-         }
 
-         static fromAffine(p) {
 
-             if (p instanceof Point)
 
-                 throw new Error('extended point not allowed');
 
-             const { x, y } = p || {};
 
-             if (!in0MaskRange(x) || !in0MaskRange(y))
 
-                 throw new Error('invalid affine point');
 
-             return new Point(x, y, _1n, modP(x * y));
 
-         }
 
-         static normalizeZ(points) {
 
-             const toInv = Fp.invertBatch(points.map((p) => p.ez));
 
-             return points.map((p, i) => p.toAffine(toInv[i])).map(Point.fromAffine);
 
-         }
 
-         // "Private method", don't use it directly
 
-         _setWindowSize(windowSize) {
 
-             this._WINDOW_SIZE = windowSize;
 
-             pointPrecomputes.delete(this);
 
-         }
 
-         // Not required for fromHex(), which always creates valid points.
 
-         // Could be useful for fromAffine().
 
-         assertValidity() {
 
-             const { a, d } = CURVE;
 
-             if (this.is0())
 
-                 throw new Error('bad point: ZERO'); // TODO: optimize, with vars below?
 
-             // Equation in affine coordinates: ax² + y² = 1 + dx²y²
 
-             // Equation in projective coordinates (X/Z, Y/Z, Z):  (aX² + Y²)Z² = Z⁴ + dX²Y²
 
-             const { ex: X, ey: Y, ez: Z, et: T } = this;
 
-             const X2 = modP(X * X); // X²
 
-             const Y2 = modP(Y * Y); // Y²
 
-             const Z2 = modP(Z * Z); // Z²
 
-             const Z4 = modP(Z2 * Z2); // Z⁴
 
-             const aX2 = modP(X2 * a); // aX²
 
-             const left = modP(Z2 * modP(aX2 + Y2)); // (aX² + Y²)Z²
 
-             const right = modP(Z4 + modP(d * modP(X2 * Y2))); // Z⁴ + dX²Y²
 
-             if (left !== right)
 
-                 throw new Error('bad point: equation left != right (1)');
 
-             // In Extended coordinates we also have T, which is x*y=T/Z: check X*Y == Z*T
 
-             const XY = modP(X * Y);
 
-             const ZT = modP(Z * T);
 
-             if (XY !== ZT)
 
-                 throw new Error('bad point: equation left != right (2)');
 
-         }
 
-         // Compare one point to another.
 
-         equals(other) {
 
-             isPoint(other);
 
-             const { ex: X1, ey: Y1, ez: Z1 } = this;
 
-             const { ex: X2, ey: Y2, ez: Z2 } = other;
 
-             const X1Z2 = modP(X1 * Z2);
 
-             const X2Z1 = modP(X2 * Z1);
 
-             const Y1Z2 = modP(Y1 * Z2);
 
-             const Y2Z1 = modP(Y2 * Z1);
 
-             return X1Z2 === X2Z1 && Y1Z2 === Y2Z1;
 
-         }
 
-         is0() {
 
-             return this.equals(Point.ZERO);
 
-         }
 
-         negate() {
 
-             // Flips point sign to a negative one (-x, y in affine coords)
 
-             return new Point(modP(-this.ex), this.ey, this.ez, modP(-this.et));
 
-         }
 
-         // Fast algo for doubling Extended Point.
 
-         // https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#doubling-dbl-2008-hwcd
 
-         // Cost: 4M + 4S + 1*a + 6add + 1*2.
 
-         double() {
 
-             const { a } = CURVE;
 
-             const { ex: X1, ey: Y1, ez: Z1 } = this;
 
-             const A = modP(X1 * X1); // A = X12
 
-             const B = modP(Y1 * Y1); // B = Y12
 
-             const C = modP(_2n * modP(Z1 * Z1)); // C = 2*Z12
 
-             const D = modP(a * A); // D = a*A
 
-             const x1y1 = X1 + Y1;
 
-             const E = modP(modP(x1y1 * x1y1) - A - B); // E = (X1+Y1)2-A-B
 
-             const G = D + B; // G = D+B
 
-             const F = G - C; // F = G-C
 
-             const H = D - B; // H = D-B
 
-             const X3 = modP(E * F); // X3 = E*F
 
-             const Y3 = modP(G * H); // Y3 = G*H
 
-             const T3 = modP(E * H); // T3 = E*H
 
-             const Z3 = modP(F * G); // Z3 = F*G
 
-             return new Point(X3, Y3, Z3, T3);
 
-         }
 
-         // Fast algo for adding 2 Extended Points.
 
-         // https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#addition-add-2008-hwcd
 
-         // Cost: 9M + 1*a + 1*d + 7add.
 
-         add(other) {
 
-             isPoint(other);
 
-             const { a, d } = CURVE;
 
-             const { ex: X1, ey: Y1, ez: Z1, et: T1 } = this;
 
-             const { ex: X2, ey: Y2, ez: Z2, et: T2 } = other;
 
-             // Faster algo for adding 2 Extended Points when curve's a=-1.
 
-             // http://hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#addition-add-2008-hwcd-4
 
-             // Cost: 8M + 8add + 2*2.
 
-             // Note: It does not check whether the `other` point is valid.
 
-             if (a === BigInt(-1)) {
 
-                 const A = modP((Y1 - X1) * (Y2 + X2));
 
-                 const B = modP((Y1 + X1) * (Y2 - X2));
 
-                 const F = modP(B - A);
 
-                 if (F === _0n)
 
-                     return this.double(); // Same point. Tests say it doesn't affect timing
 
-                 const C = modP(Z1 * _2n * T2);
 
-                 const D = modP(T1 * _2n * Z2);
 
-                 const E = D + C;
 
-                 const G = B + A;
 
-                 const H = D - C;
 
-                 const X3 = modP(E * F);
 
-                 const Y3 = modP(G * H);
 
-                 const T3 = modP(E * H);
 
-                 const Z3 = modP(F * G);
 
-                 return new Point(X3, Y3, Z3, T3);
 
-             }
 
-             const A = modP(X1 * X2); // A = X1*X2
 
-             const B = modP(Y1 * Y2); // B = Y1*Y2
 
-             const C = modP(T1 * d * T2); // C = T1*d*T2
 
-             const D = modP(Z1 * Z2); // D = Z1*Z2
 
-             const E = modP((X1 + Y1) * (X2 + Y2) - A - B); // E = (X1+Y1)*(X2+Y2)-A-B
 
-             const F = D - C; // F = D-C
 
-             const G = D + C; // G = D+C
 
-             const H = modP(B - a * A); // H = B-a*A
 
-             const X3 = modP(E * F); // X3 = E*F
 
-             const Y3 = modP(G * H); // Y3 = G*H
 
-             const T3 = modP(E * H); // T3 = E*H
 
-             const Z3 = modP(F * G); // Z3 = F*G
 
-             return new Point(X3, Y3, Z3, T3);
 
-         }
 
-         subtract(other) {
 
-             return this.add(other.negate());
 
-         }
 
-         wNAF(n) {
 
-             return wnaf.wNAFCached(this, pointPrecomputes, n, Point.normalizeZ);
 
-         }
 
-         // Constant-time multiplication.
 
-         multiply(scalar) {
 
-             const { p, f } = this.wNAF(assertInRange(scalar, CURVE_ORDER));
 
-             return Point.normalizeZ([p, f])[0];
 
-         }
 
-         // Non-constant-time multiplication. Uses double-and-add algorithm.
 
-         // It's faster, but should only be used when you don't care about
 
-         // an exposed private key e.g. sig verification.
 
-         // Does NOT allow scalars higher than CURVE.n.
 
-         multiplyUnsafe(scalar) {
 
-             let n = assertGE0(scalar); // 0 <= scalar < CURVE.n
 
-             if (n === _0n)
 
-                 return I;
 
-             if (this.equals(I) || n === _1n)
 
-                 return this;
 
-             if (this.equals(G))
 
-                 return this.wNAF(n).p;
 
-             return wnaf.unsafeLadder(this, n);
 
-         }
 
-         // Checks if point is of small order.
 
-         // If you add something to small order point, you will have "dirty"
 
-         // point with torsion component.
 
-         // Multiplies point by cofactor and checks if the result is 0.
 
-         isSmallOrder() {
 
-             return this.multiplyUnsafe(cofactor).is0();
 
-         }
 
-         // Multiplies point by curve order and checks if the result is 0.
 
-         // Returns `false` is the point is dirty.
 
-         isTorsionFree() {
 
-             return wnaf.unsafeLadder(this, CURVE_ORDER).is0();
 
-         }
 
-         // Converts Extended point to default (x, y) coordinates.
 
-         // Can accept precomputed Z^-1 - for example, from invertBatch.
 
-         toAffine(iz) {
 
-             const { ex: x, ey: y, ez: z } = this;
 
-             const is0 = this.is0();
 
-             if (iz == null)
 
-                 iz = is0 ? _8n : Fp.inv(z); // 8 was chosen arbitrarily
 
-             const ax = modP(x * iz);
 
-             const ay = modP(y * iz);
 
-             const zz = modP(z * iz);
 
-             if (is0)
 
-                 return { x: _0n, y: _1n };
 
-             if (zz !== _1n)
 
-                 throw new Error('invZ was invalid');
 
-             return { x: ax, y: ay };
 
-         }
 
-         clearCofactor() {
 
-             const { h: cofactor } = CURVE;
 
-             if (cofactor === _1n)
 
-                 return this;
 
-             return this.multiplyUnsafe(cofactor);
 
-         }
 
-         // Converts hash string or Uint8Array to Point.
 
-         // Uses algo from RFC8032 5.1.3.
 
-         static fromHex(hex, zip215 = false) {
 
-             const { d, a } = CURVE;
 
-             const len = Fp.BYTES;
 
-             hex = ensureBytes('pointHex', hex, len); // copy hex to a new array
 
-             const normed = hex.slice(); // copy again, we'll manipulate it
 
-             const lastByte = hex[len - 1]; // select last byte
 
-             normed[len - 1] = lastByte & ~0x80; // clear last bit
 
-             const y = ut.bytesToNumberLE(normed);
 
-             if (y === _0n) {
 
-                 // y=0 is allowed
 
-             }
 
-             else {
 
-                 // RFC8032 prohibits >= p, but ZIP215 doesn't
 
-                 if (zip215)
 
-                     assertInRange(y, MASK); // zip215=true [1..P-1] (2^255-19-1 for ed25519)
 
-                 else
 
-                     assertInRange(y, Fp.ORDER); // zip215=false [1..MASK-1] (2^256-1 for ed25519)
 
-             }
 
-             // Ed25519: x² = (y²-1)/(dy²+1) mod p. Ed448: x² = (y²-1)/(dy²-1) mod p. Generic case:
 
-             // ax²+y²=1+dx²y² => y²-1=dx²y²-ax² => y²-1=x²(dy²-a) => x²=(y²-1)/(dy²-a)
 
-             const y2 = modP(y * y); // denominator is always non-0 mod p.
 
-             const u = modP(y2 - _1n); // u = y² - 1
 
-             const v = modP(d * y2 - a); // v = d y² + 1.
 
-             let { isValid, value: x } = uvRatio(u, v); // √(u/v)
 
-             if (!isValid)
 
-                 throw new Error('Point.fromHex: invalid y coordinate');
 
-             const isXOdd = (x & _1n) === _1n; // There are 2 square roots. Use x_0 bit to select proper
 
-             const isLastByteOdd = (lastByte & 0x80) !== 0; // x_0, last bit
 
-             if (!zip215 && x === _0n && isLastByteOdd)
 
-                 // if x=0 and x_0 = 1, fail
 
-                 throw new Error('Point.fromHex: x=0 and x_0=1');
 
-             if (isLastByteOdd !== isXOdd)
 
-                 x = modP(-x); // if x_0 != x mod 2, set x = p-x
 
-             return Point.fromAffine({ x, y });
 
-         }
 
-         static fromPrivateKey(privKey) {
 
-             return getExtendedPublicKey(privKey).point;
 
-         }
 
-         toRawBytes() {
 
-             const { x, y } = this.toAffine();
 
-             const bytes = ut.numberToBytesLE(y, Fp.BYTES); // each y has 2 x values (x, -y)
 
-             bytes[bytes.length - 1] |= x & _1n ? 0x80 : 0; // when compressing, it's enough to store y
 
-             return bytes; // and use the last byte to encode sign of x
 
-         }
 
-         toHex() {
 
-             return ut.bytesToHex(this.toRawBytes()); // Same as toRawBytes, but returns string.
 
-         }
 
-     }
 
-     Point.BASE = new Point(CURVE.Gx, CURVE.Gy, _1n, modP(CURVE.Gx * CURVE.Gy));
 
-     Point.ZERO = new Point(_0n, _1n, _1n, _0n); // 0, 1, 1, 0
 
-     const { BASE: G, ZERO: I } = Point;
 
-     const wnaf = wNAF(Point, nByteLength * 8);
 
-     function modN(a) {
 
-         return mod(a, CURVE_ORDER);
 
-     }
 
-     // Little-endian SHA512 with modulo n
 
-     function modN_LE(hash) {
 
-         return modN(ut.bytesToNumberLE(hash));
 
-     }
 
-     /** Convenience method that creates public key and other stuff. RFC8032 5.1.5 */
 
-     function getExtendedPublicKey(key) {
 
-         const len = nByteLength;
 
-         key = ensureBytes('private key', key, len);
 
-         // Hash private key with curve's hash function to produce uniformingly random input
 
-         // Check byte lengths: ensure(64, h(ensure(32, key)))
 
-         const hashed = ensureBytes('hashed private key', cHash(key), 2 * len);
 
-         const head = adjustScalarBytes(hashed.slice(0, len)); // clear first half bits, produce FE
 
-         const prefix = hashed.slice(len, 2 * len); // second half is called key prefix (5.1.6)
 
-         const scalar = modN_LE(head); // The actual private scalar
 
-         const point = G.multiply(scalar); // Point on Edwards curve aka public key
 
-         const pointBytes = point.toRawBytes(); // Uint8Array representation
 
-         return { head, prefix, scalar, point, pointBytes };
 
-     }
 
-     // Calculates EdDSA pub key. RFC8032 5.1.5. Privkey is hashed. Use first half with 3 bits cleared
 
-     function getPublicKey(privKey) {
 
-         return getExtendedPublicKey(privKey).pointBytes;
 
-     }
 
-     // int('LE', SHA512(dom2(F, C) || msgs)) mod N
 
-     function hashDomainToScalar(context = new Uint8Array(), ...msgs) {
 
-         const msg = ut.concatBytes(...msgs);
 
-         return modN_LE(cHash(domain(msg, ensureBytes('context', context), !!prehash)));
 
-     }
 
-     /** Signs message with privateKey. RFC8032 5.1.6 */
 
-     function sign(msg, privKey, options = {}) {
 
-         msg = ensureBytes('message', msg);
 
-         if (prehash)
 
-             msg = prehash(msg); // for ed25519ph etc.
 
-         const { prefix, scalar, pointBytes } = getExtendedPublicKey(privKey);
 
-         const r = hashDomainToScalar(options.context, prefix, msg); // r = dom2(F, C) || prefix || PH(M)
 
-         const R = G.multiply(r).toRawBytes(); // R = rG
 
-         const k = hashDomainToScalar(options.context, R, pointBytes, msg); // R || A || PH(M)
 
-         const s = modN(r + k * scalar); // S = (r + k * s) mod L
 
-         assertGE0(s); // 0 <= s < l
 
-         const res = ut.concatBytes(R, ut.numberToBytesLE(s, Fp.BYTES));
 
-         return ensureBytes('result', res, nByteLength * 2); // 64-byte signature
 
-     }
 
-     const verifyOpts = VERIFY_DEFAULT;
 
-     function verify(sig, msg, publicKey, options = verifyOpts) {
 
-         const { context, zip215 } = options;
 
-         const len = Fp.BYTES; // Verifies EdDSA signature against message and public key. RFC8032 5.1.7.
 
-         sig = ensureBytes('signature', sig, 2 * len); // An extended group equation is checked.
 
-         msg = ensureBytes('message', msg);
 
-         if (prehash)
 
-             msg = prehash(msg); // for ed25519ph, etc
 
-         const s = ut.bytesToNumberLE(sig.slice(len, 2 * len));
 
-         // zip215: true is good for consensus-critical apps and allows points < 2^256
 
-         // zip215: false follows RFC8032 / NIST186-5 and restricts points to CURVE.p
 
-         let A, R, SB;
 
-         try {
 
-             A = Point.fromHex(publicKey, zip215);
 
-             R = Point.fromHex(sig.slice(0, len), zip215);
 
-             SB = G.multiplyUnsafe(s); // 0 <= s < l is done inside
 
-         }
 
-         catch (error) {
 
-             return false;
 
-         }
 
-         if (!zip215 && A.isSmallOrder())
 
-             return false;
 
-         const k = hashDomainToScalar(context, R.toRawBytes(), A.toRawBytes(), msg);
 
-         const RkA = R.add(A.multiplyUnsafe(k));
 
-         // [8][S]B = [8]R + [8][k]A'
 
-         return RkA.subtract(SB).clearCofactor().equals(Point.ZERO);
 
-     }
 
-     G._setWindowSize(8); // Enable precomputes. Slows down first publicKey computation by 20ms.
 
-     const utils = {
 
-         getExtendedPublicKey,
 
-         // ed25519 private keys are uniform 32b. No need to check for modulo bias, like in secp256k1.
 
-         randomPrivateKey: () => randomBytes(Fp.BYTES),
 
-         /**
 
-          * We're doing scalar multiplication (used in getPublicKey etc) with precomputed BASE_POINT
 
-          * values. This slows down first getPublicKey() by milliseconds (see Speed section),
 
-          * but allows to speed-up subsequent getPublicKey() calls up to 20x.
 
-          * @param windowSize 2, 4, 8, 16
 
-          */
 
-         precompute(windowSize = 8, point = Point.BASE) {
 
-             point._setWindowSize(windowSize);
 
-             point.multiply(BigInt(3));
 
-             return point;
 
-         },
 
-     };
 
-     return {
 
-         CURVE,
 
-         getPublicKey,
 
-         sign,
 
-         verify,
 
-         ExtendedPoint: Point,
 
-         utils,
 
-     };
 
- }
 
- //# sourceMappingURL=edwards.js.map
 
 
  |