| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 | export declare function mod(a: bigint, b: bigint): bigint;/** * Efficiently raise num to power and do modular division. * Unsafe in some contexts: uses ladder, so can expose bigint bits. * @example * pow(2n, 6n, 11n) // 64n % 11n == 9n */export declare function pow(num: bigint, power: bigint, modulo: bigint): bigint;export declare function pow2(x: bigint, power: bigint, modulo: bigint): bigint;export declare function invert(number: bigint, modulo: bigint): bigint;/** * Tonelli-Shanks square root search algorithm. * 1. https://eprint.iacr.org/2012/685.pdf (page 12) * 2. Square Roots from 1; 24, 51, 10 to Dan Shanks * Will start an infinite loop if field order P is not prime. * @param P field order * @returns function that takes field Fp (created from P) and number n */export declare function tonelliShanks(P: bigint): <T>(Fp: IField<T>, n: T) => T;export declare function FpSqrt(P: bigint): <T>(Fp: IField<T>, n: T) => T;export declare const isNegativeLE: (num: bigint, modulo: bigint) => boolean;export interface IField<T> {    ORDER: bigint;    BYTES: number;    BITS: number;    MASK: bigint;    ZERO: T;    ONE: T;    create: (num: T) => T;    isValid: (num: T) => boolean;    is0: (num: T) => boolean;    neg(num: T): T;    inv(num: T): T;    sqrt(num: T): T;    sqr(num: T): T;    eql(lhs: T, rhs: T): boolean;    add(lhs: T, rhs: T): T;    sub(lhs: T, rhs: T): T;    mul(lhs: T, rhs: T | bigint): T;    pow(lhs: T, power: bigint): T;    div(lhs: T, rhs: T | bigint): T;    addN(lhs: T, rhs: T): T;    subN(lhs: T, rhs: T): T;    mulN(lhs: T, rhs: T | bigint): T;    sqrN(num: T): T;    isOdd?(num: T): boolean;    pow(lhs: T, power: bigint): T;    invertBatch: (lst: T[]) => T[];    toBytes(num: T): Uint8Array;    fromBytes(bytes: Uint8Array): T;    cmov(a: T, b: T, c: boolean): T;}export declare function validateField<T>(field: IField<T>): IField<T>;/** * Same as `pow` but for Fp: non-constant-time. * Unsafe in some contexts: uses ladder, so can expose bigint bits. */export declare function FpPow<T>(f: IField<T>, num: T, power: bigint): T;/** * Efficiently invert an array of Field elements. * `inv(0)` will return `undefined` here: make sure to throw an error. */export declare function FpInvertBatch<T>(f: IField<T>, nums: T[]): T[];export declare function FpDiv<T>(f: IField<T>, lhs: T, rhs: T | bigint): T;export declare function FpIsSquare<T>(f: IField<T>): (x: T) => boolean;export declare function nLength(n: bigint, nBitLength?: number): {    nBitLength: number;    nByteLength: number;};type FpField = IField<bigint> & Required<Pick<IField<bigint>, 'isOdd'>>;/** * Initializes a finite field over prime. **Non-primes are not supported.** * Do not init in loop: slow. Very fragile: always run a benchmark on a change. * Major performance optimizations: * * a) denormalized operations like mulN instead of mul * * b) same object shape: never add or remove keys * * c) Object.freeze * @param ORDER prime positive bigint * @param bitLen how many bits the field consumes * @param isLE (def: false) if encoding / decoding should be in little-endian * @param redef optional faster redefinitions of sqrt and other methods */export declare function Field(ORDER: bigint, bitLen?: number, isLE?: boolean, redef?: Partial<IField<bigint>>): Readonly<FpField>;export declare function FpSqrtOdd<T>(Fp: IField<T>, elm: T): T;export declare function FpSqrtEven<T>(Fp: IField<T>, elm: T): T;/** * "Constant-time" private key generation utility. * Same as mapKeyToField, but accepts less bytes (40 instead of 48 for 32-byte field). * Which makes it slightly more biased, less secure. * @deprecated use mapKeyToField instead */export declare function hashToPrivateScalar(hash: string | Uint8Array, groupOrder: bigint, isLE?: boolean): bigint;/** * Returns total number of bytes consumed by the field element. * For example, 32 bytes for usual 256-bit weierstrass curve. * @param fieldOrder number of field elements, usually CURVE.n * @returns byte length of field */export declare function getFieldBytesLength(fieldOrder: bigint): number;/** * Returns minimal amount of bytes that can be safely reduced * by field order. * Should be 2^-128 for 128-bit curve such as P256. * @param fieldOrder number of field elements, usually CURVE.n * @returns byte length of target hash */export declare function getMinHashLength(fieldOrder: bigint): number;/** * "Constant-time" private key generation utility. * Can take (n + n/2) or more bytes of uniform input e.g. from CSPRNG or KDF * and convert them into private scalar, with the modulo bias being negligible. * Needs at least 48 bytes of input for 32-byte private key. * https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/ * FIPS 186-5, A.2 https://csrc.nist.gov/publications/detail/fips/186/5/final * RFC 9380, https://www.rfc-editor.org/rfc/rfc9380#section-5 * @param hash hash output from SHA3 or a similar function * @param groupOrder size of subgroup - (e.g. secp256k1.CURVE.n) * @param isLE interpret hash bytes as LE num * @returns valid private scalar */export declare function mapHashToField(key: Uint8Array, fieldOrder: bigint, isLE?: boolean): Uint8Array;export {};//# sourceMappingURL=modular.d.ts.map
 |