| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 | 
							- export declare function mod(a: bigint, b: bigint): bigint;
 
- /**
 
-  * Efficiently raise num to power and do modular division.
 
-  * Unsafe in some contexts: uses ladder, so can expose bigint bits.
 
-  * @example
 
-  * pow(2n, 6n, 11n) // 64n % 11n == 9n
 
-  */
 
- export declare function pow(num: bigint, power: bigint, modulo: bigint): bigint;
 
- export declare function pow2(x: bigint, power: bigint, modulo: bigint): bigint;
 
- export declare function invert(number: bigint, modulo: bigint): bigint;
 
- /**
 
-  * Tonelli-Shanks square root search algorithm.
 
-  * 1. https://eprint.iacr.org/2012/685.pdf (page 12)
 
-  * 2. Square Roots from 1; 24, 51, 10 to Dan Shanks
 
-  * Will start an infinite loop if field order P is not prime.
 
-  * @param P field order
 
-  * @returns function that takes field Fp (created from P) and number n
 
-  */
 
- export declare function tonelliShanks(P: bigint): <T>(Fp: IField<T>, n: T) => T;
 
- export declare function FpSqrt(P: bigint): <T>(Fp: IField<T>, n: T) => T;
 
- export declare const isNegativeLE: (num: bigint, modulo: bigint) => boolean;
 
- export interface IField<T> {
 
-     ORDER: bigint;
 
-     BYTES: number;
 
-     BITS: number;
 
-     MASK: bigint;
 
-     ZERO: T;
 
-     ONE: T;
 
-     create: (num: T) => T;
 
-     isValid: (num: T) => boolean;
 
-     is0: (num: T) => boolean;
 
-     neg(num: T): T;
 
-     inv(num: T): T;
 
-     sqrt(num: T): T;
 
-     sqr(num: T): T;
 
-     eql(lhs: T, rhs: T): boolean;
 
-     add(lhs: T, rhs: T): T;
 
-     sub(lhs: T, rhs: T): T;
 
-     mul(lhs: T, rhs: T | bigint): T;
 
-     pow(lhs: T, power: bigint): T;
 
-     div(lhs: T, rhs: T | bigint): T;
 
-     addN(lhs: T, rhs: T): T;
 
-     subN(lhs: T, rhs: T): T;
 
-     mulN(lhs: T, rhs: T | bigint): T;
 
-     sqrN(num: T): T;
 
-     isOdd?(num: T): boolean;
 
-     pow(lhs: T, power: bigint): T;
 
-     invertBatch: (lst: T[]) => T[];
 
-     toBytes(num: T): Uint8Array;
 
-     fromBytes(bytes: Uint8Array): T;
 
-     cmov(a: T, b: T, c: boolean): T;
 
- }
 
- export declare function validateField<T>(field: IField<T>): IField<T>;
 
- /**
 
-  * Same as `pow` but for Fp: non-constant-time.
 
-  * Unsafe in some contexts: uses ladder, so can expose bigint bits.
 
-  */
 
- export declare function FpPow<T>(f: IField<T>, num: T, power: bigint): T;
 
- /**
 
-  * Efficiently invert an array of Field elements.
 
-  * `inv(0)` will return `undefined` here: make sure to throw an error.
 
-  */
 
- export declare function FpInvertBatch<T>(f: IField<T>, nums: T[]): T[];
 
- export declare function FpDiv<T>(f: IField<T>, lhs: T, rhs: T | bigint): T;
 
- export declare function FpIsSquare<T>(f: IField<T>): (x: T) => boolean;
 
- export declare function nLength(n: bigint, nBitLength?: number): {
 
-     nBitLength: number;
 
-     nByteLength: number;
 
- };
 
- type FpField = IField<bigint> & Required<Pick<IField<bigint>, 'isOdd'>>;
 
- /**
 
-  * Initializes a finite field over prime. **Non-primes are not supported.**
 
-  * Do not init in loop: slow. Very fragile: always run a benchmark on a change.
 
-  * Major performance optimizations:
 
-  * * a) denormalized operations like mulN instead of mul
 
-  * * b) same object shape: never add or remove keys
 
-  * * c) Object.freeze
 
-  * @param ORDER prime positive bigint
 
-  * @param bitLen how many bits the field consumes
 
-  * @param isLE (def: false) if encoding / decoding should be in little-endian
 
-  * @param redef optional faster redefinitions of sqrt and other methods
 
-  */
 
- export declare function Field(ORDER: bigint, bitLen?: number, isLE?: boolean, redef?: Partial<IField<bigint>>): Readonly<FpField>;
 
- export declare function FpSqrtOdd<T>(Fp: IField<T>, elm: T): T;
 
- export declare function FpSqrtEven<T>(Fp: IField<T>, elm: T): T;
 
- /**
 
-  * "Constant-time" private key generation utility.
 
-  * Same as mapKeyToField, but accepts less bytes (40 instead of 48 for 32-byte field).
 
-  * Which makes it slightly more biased, less secure.
 
-  * @deprecated use mapKeyToField instead
 
-  */
 
- export declare function hashToPrivateScalar(hash: string | Uint8Array, groupOrder: bigint, isLE?: boolean): bigint;
 
- /**
 
-  * Returns total number of bytes consumed by the field element.
 
-  * For example, 32 bytes for usual 256-bit weierstrass curve.
 
-  * @param fieldOrder number of field elements, usually CURVE.n
 
-  * @returns byte length of field
 
-  */
 
- export declare function getFieldBytesLength(fieldOrder: bigint): number;
 
- /**
 
-  * Returns minimal amount of bytes that can be safely reduced
 
-  * by field order.
 
-  * Should be 2^-128 for 128-bit curve such as P256.
 
-  * @param fieldOrder number of field elements, usually CURVE.n
 
-  * @returns byte length of target hash
 
-  */
 
- export declare function getMinHashLength(fieldOrder: bigint): number;
 
- /**
 
-  * "Constant-time" private key generation utility.
 
-  * Can take (n + n/2) or more bytes of uniform input e.g. from CSPRNG or KDF
 
-  * and convert them into private scalar, with the modulo bias being negligible.
 
-  * Needs at least 48 bytes of input for 32-byte private key.
 
-  * https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/
 
-  * FIPS 186-5, A.2 https://csrc.nist.gov/publications/detail/fips/186/5/final
 
-  * RFC 9380, https://www.rfc-editor.org/rfc/rfc9380#section-5
 
-  * @param hash hash output from SHA3 or a similar function
 
-  * @param groupOrder size of subgroup - (e.g. secp256k1.CURVE.n)
 
-  * @param isLE interpret hash bytes as LE num
 
-  * @returns valid private scalar
 
-  */
 
- export declare function mapHashToField(key: Uint8Array, fieldOrder: bigint, isLE?: boolean): Uint8Array;
 
- export {};
 
- //# sourceMappingURL=modular.d.ts.map
 
 
  |