1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069 |
- "use strict";
- Object.defineProperty(exports, "__esModule", { value: true });
- exports.DER = void 0;
- exports.weierstrassPoints = weierstrassPoints;
- exports.weierstrass = weierstrass;
- exports.SWUFpSqrtRatio = SWUFpSqrtRatio;
- exports.mapToCurveSimpleSWU = mapToCurveSimpleSWU;
- /*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
- // Short Weierstrass curve. The formula is: y² = x³ + ax + b
- const curve_js_1 = require("./curve.js");
- const mod = require("./modular.js");
- const ut = require("./utils.js");
- const utils_js_1 = require("./utils.js");
- function validatePointOpts(curve) {
- const opts = (0, curve_js_1.validateBasic)(curve);
- ut.validateObject(opts, {
- a: 'field',
- b: 'field',
- }, {
- allowedPrivateKeyLengths: 'array',
- wrapPrivateKey: 'boolean',
- isTorsionFree: 'function',
- clearCofactor: 'function',
- allowInfinityPoint: 'boolean',
- fromBytes: 'function',
- toBytes: 'function',
- });
- const { endo, Fp, a } = opts;
- if (endo) {
- if (!Fp.eql(a, Fp.ZERO)) {
- throw new Error('Endomorphism can only be defined for Koblitz curves that have a=0');
- }
- if (typeof endo !== 'object' ||
- typeof endo.beta !== 'bigint' ||
- typeof endo.splitScalar !== 'function') {
- throw new Error('Expected endomorphism with beta: bigint and splitScalar: function');
- }
- }
- return Object.freeze({ ...opts });
- }
- // ASN.1 DER encoding utilities
- const { bytesToNumberBE: b2n, hexToBytes: h2b } = ut;
- exports.DER = {
- // asn.1 DER encoding utils
- Err: class DERErr extends Error {
- constructor(m = '') {
- super(m);
- }
- },
- _parseInt(data) {
- const { Err: E } = exports.DER;
- if (data.length < 2 || data[0] !== 0x02)
- throw new E('Invalid signature integer tag');
- const len = data[1];
- const res = data.subarray(2, len + 2);
- if (!len || res.length !== len)
- throw new E('Invalid signature integer: wrong length');
- // https://crypto.stackexchange.com/a/57734 Leftmost bit of first byte is 'negative' flag,
- // since we always use positive integers here. It must always be empty:
- // - add zero byte if exists
- // - if next byte doesn't have a flag, leading zero is not allowed (minimal encoding)
- if (res[0] & 0b10000000)
- throw new E('Invalid signature integer: negative');
- if (res[0] === 0x00 && !(res[1] & 0b10000000))
- throw new E('Invalid signature integer: unnecessary leading zero');
- return { d: b2n(res), l: data.subarray(len + 2) }; // d is data, l is left
- },
- toSig(hex) {
- // parse DER signature
- const { Err: E } = exports.DER;
- const data = typeof hex === 'string' ? h2b(hex) : hex;
- ut.abytes(data);
- let l = data.length;
- if (l < 2 || data[0] != 0x30)
- throw new E('Invalid signature tag');
- if (data[1] !== l - 2)
- throw new E('Invalid signature: incorrect length');
- const { d: r, l: sBytes } = exports.DER._parseInt(data.subarray(2));
- const { d: s, l: rBytesLeft } = exports.DER._parseInt(sBytes);
- if (rBytesLeft.length)
- throw new E('Invalid signature: left bytes after parsing');
- return { r, s };
- },
- hexFromSig(sig) {
- // Add leading zero if first byte has negative bit enabled. More details in '_parseInt'
- const slice = (s) => (Number.parseInt(s[0], 16) & 0b1000 ? '00' + s : s);
- const h = (num) => {
- const hex = num.toString(16);
- return hex.length & 1 ? `0${hex}` : hex;
- };
- const s = slice(h(sig.s));
- const r = slice(h(sig.r));
- const shl = s.length / 2;
- const rhl = r.length / 2;
- const sl = h(shl);
- const rl = h(rhl);
- return `30${h(rhl + shl + 4)}02${rl}${r}02${sl}${s}`;
- },
- };
- // Be friendly to bad ECMAScript parsers by not using bigint literals
- // prettier-ignore
- const _0n = BigInt(0), _1n = BigInt(1), _2n = BigInt(2), _3n = BigInt(3), _4n = BigInt(4);
- function weierstrassPoints(opts) {
- const CURVE = validatePointOpts(opts);
- const { Fp } = CURVE; // All curves has same field / group length as for now, but they can differ
- const toBytes = CURVE.toBytes ||
- ((_c, point, _isCompressed) => {
- const a = point.toAffine();
- return ut.concatBytes(Uint8Array.from([0x04]), Fp.toBytes(a.x), Fp.toBytes(a.y));
- });
- const fromBytes = CURVE.fromBytes ||
- ((bytes) => {
- // const head = bytes[0];
- const tail = bytes.subarray(1);
- // if (head !== 0x04) throw new Error('Only non-compressed encoding is supported');
- const x = Fp.fromBytes(tail.subarray(0, Fp.BYTES));
- const y = Fp.fromBytes(tail.subarray(Fp.BYTES, 2 * Fp.BYTES));
- return { x, y };
- });
- /**
- * y² = x³ + ax + b: Short weierstrass curve formula
- * @returns y²
- */
- function weierstrassEquation(x) {
- const { a, b } = CURVE;
- const x2 = Fp.sqr(x); // x * x
- const x3 = Fp.mul(x2, x); // x2 * x
- return Fp.add(Fp.add(x3, Fp.mul(x, a)), b); // x3 + a * x + b
- }
- // Validate whether the passed curve params are valid.
- // We check if curve equation works for generator point.
- // `assertValidity()` won't work: `isTorsionFree()` is not available at this point in bls12-381.
- // ProjectivePoint class has not been initialized yet.
- if (!Fp.eql(Fp.sqr(CURVE.Gy), weierstrassEquation(CURVE.Gx)))
- throw new Error('bad generator point: equation left != right');
- // Valid group elements reside in range 1..n-1
- function isWithinCurveOrder(num) {
- return typeof num === 'bigint' && _0n < num && num < CURVE.n;
- }
- function assertGE(num) {
- if (!isWithinCurveOrder(num))
- throw new Error('Expected valid bigint: 0 < bigint < curve.n');
- }
- // Validates if priv key is valid and converts it to bigint.
- // Supports options allowedPrivateKeyLengths and wrapPrivateKey.
- function normPrivateKeyToScalar(key) {
- const { allowedPrivateKeyLengths: lengths, nByteLength, wrapPrivateKey, n } = CURVE;
- if (lengths && typeof key !== 'bigint') {
- if (ut.isBytes(key))
- key = ut.bytesToHex(key);
- // Normalize to hex string, pad. E.g. P521 would norm 130-132 char hex to 132-char bytes
- if (typeof key !== 'string' || !lengths.includes(key.length))
- throw new Error('Invalid key');
- key = key.padStart(nByteLength * 2, '0');
- }
- let num;
- try {
- num =
- typeof key === 'bigint'
- ? key
- : ut.bytesToNumberBE((0, utils_js_1.ensureBytes)('private key', key, nByteLength));
- }
- catch (error) {
- throw new Error(`private key must be ${nByteLength} bytes, hex or bigint, not ${typeof key}`);
- }
- if (wrapPrivateKey)
- num = mod.mod(num, n); // disabled by default, enabled for BLS
- assertGE(num); // num in range [1..N-1]
- return num;
- }
- const pointPrecomputes = new Map();
- function assertPrjPoint(other) {
- if (!(other instanceof Point))
- throw new Error('ProjectivePoint expected');
- }
- /**
- * Projective Point works in 3d / projective (homogeneous) coordinates: (x, y, z) ∋ (x=x/z, y=y/z)
- * Default Point works in 2d / affine coordinates: (x, y)
- * We're doing calculations in projective, because its operations don't require costly inversion.
- */
- class Point {
- constructor(px, py, pz) {
- this.px = px;
- this.py = py;
- this.pz = pz;
- if (px == null || !Fp.isValid(px))
- throw new Error('x required');
- if (py == null || !Fp.isValid(py))
- throw new Error('y required');
- if (pz == null || !Fp.isValid(pz))
- throw new Error('z required');
- }
- // Does not validate if the point is on-curve.
- // Use fromHex instead, or call assertValidity() later.
- static fromAffine(p) {
- const { x, y } = p || {};
- if (!p || !Fp.isValid(x) || !Fp.isValid(y))
- throw new Error('invalid affine point');
- if (p instanceof Point)
- throw new Error('projective point not allowed');
- const is0 = (i) => Fp.eql(i, Fp.ZERO);
- // fromAffine(x:0, y:0) would produce (x:0, y:0, z:1), but we need (x:0, y:1, z:0)
- if (is0(x) && is0(y))
- return Point.ZERO;
- return new Point(x, y, Fp.ONE);
- }
- get x() {
- return this.toAffine().x;
- }
- get y() {
- return this.toAffine().y;
- }
- /**
- * Takes a bunch of Projective Points but executes only one
- * inversion on all of them. Inversion is very slow operation,
- * so this improves performance massively.
- * Optimization: converts a list of projective points to a list of identical points with Z=1.
- */
- static normalizeZ(points) {
- const toInv = Fp.invertBatch(points.map((p) => p.pz));
- return points.map((p, i) => p.toAffine(toInv[i])).map(Point.fromAffine);
- }
- /**
- * Converts hash string or Uint8Array to Point.
- * @param hex short/long ECDSA hex
- */
- static fromHex(hex) {
- const P = Point.fromAffine(fromBytes((0, utils_js_1.ensureBytes)('pointHex', hex)));
- P.assertValidity();
- return P;
- }
- // Multiplies generator point by privateKey.
- static fromPrivateKey(privateKey) {
- return Point.BASE.multiply(normPrivateKeyToScalar(privateKey));
- }
- // "Private method", don't use it directly
- _setWindowSize(windowSize) {
- this._WINDOW_SIZE = windowSize;
- pointPrecomputes.delete(this);
- }
- // A point on curve is valid if it conforms to equation.
- assertValidity() {
- if (this.is0()) {
- // (0, 1, 0) aka ZERO is invalid in most contexts.
- // In BLS, ZERO can be serialized, so we allow it.
- // (0, 0, 0) is wrong representation of ZERO and is always invalid.
- if (CURVE.allowInfinityPoint && !Fp.is0(this.py))
- return;
- throw new Error('bad point: ZERO');
- }
- // Some 3rd-party test vectors require different wording between here & `fromCompressedHex`
- const { x, y } = this.toAffine();
- // Check if x, y are valid field elements
- if (!Fp.isValid(x) || !Fp.isValid(y))
- throw new Error('bad point: x or y not FE');
- const left = Fp.sqr(y); // y²
- const right = weierstrassEquation(x); // x³ + ax + b
- if (!Fp.eql(left, right))
- throw new Error('bad point: equation left != right');
- if (!this.isTorsionFree())
- throw new Error('bad point: not in prime-order subgroup');
- }
- hasEvenY() {
- const { y } = this.toAffine();
- if (Fp.isOdd)
- return !Fp.isOdd(y);
- throw new Error("Field doesn't support isOdd");
- }
- /**
- * Compare one point to another.
- */
- equals(other) {
- assertPrjPoint(other);
- const { px: X1, py: Y1, pz: Z1 } = this;
- const { px: X2, py: Y2, pz: Z2 } = other;
- const U1 = Fp.eql(Fp.mul(X1, Z2), Fp.mul(X2, Z1));
- const U2 = Fp.eql(Fp.mul(Y1, Z2), Fp.mul(Y2, Z1));
- return U1 && U2;
- }
- /**
- * Flips point to one corresponding to (x, -y) in Affine coordinates.
- */
- negate() {
- return new Point(this.px, Fp.neg(this.py), this.pz);
- }
- // Renes-Costello-Batina exception-free doubling formula.
- // There is 30% faster Jacobian formula, but it is not complete.
- // https://eprint.iacr.org/2015/1060, algorithm 3
- // Cost: 8M + 3S + 3*a + 2*b3 + 15add.
- double() {
- const { a, b } = CURVE;
- const b3 = Fp.mul(b, _3n);
- const { px: X1, py: Y1, pz: Z1 } = this;
- let X3 = Fp.ZERO, Y3 = Fp.ZERO, Z3 = Fp.ZERO; // prettier-ignore
- let t0 = Fp.mul(X1, X1); // step 1
- let t1 = Fp.mul(Y1, Y1);
- let t2 = Fp.mul(Z1, Z1);
- let t3 = Fp.mul(X1, Y1);
- t3 = Fp.add(t3, t3); // step 5
- Z3 = Fp.mul(X1, Z1);
- Z3 = Fp.add(Z3, Z3);
- X3 = Fp.mul(a, Z3);
- Y3 = Fp.mul(b3, t2);
- Y3 = Fp.add(X3, Y3); // step 10
- X3 = Fp.sub(t1, Y3);
- Y3 = Fp.add(t1, Y3);
- Y3 = Fp.mul(X3, Y3);
- X3 = Fp.mul(t3, X3);
- Z3 = Fp.mul(b3, Z3); // step 15
- t2 = Fp.mul(a, t2);
- t3 = Fp.sub(t0, t2);
- t3 = Fp.mul(a, t3);
- t3 = Fp.add(t3, Z3);
- Z3 = Fp.add(t0, t0); // step 20
- t0 = Fp.add(Z3, t0);
- t0 = Fp.add(t0, t2);
- t0 = Fp.mul(t0, t3);
- Y3 = Fp.add(Y3, t0);
- t2 = Fp.mul(Y1, Z1); // step 25
- t2 = Fp.add(t2, t2);
- t0 = Fp.mul(t2, t3);
- X3 = Fp.sub(X3, t0);
- Z3 = Fp.mul(t2, t1);
- Z3 = Fp.add(Z3, Z3); // step 30
- Z3 = Fp.add(Z3, Z3);
- return new Point(X3, Y3, Z3);
- }
- // Renes-Costello-Batina exception-free addition formula.
- // There is 30% faster Jacobian formula, but it is not complete.
- // https://eprint.iacr.org/2015/1060, algorithm 1
- // Cost: 12M + 0S + 3*a + 3*b3 + 23add.
- add(other) {
- assertPrjPoint(other);
- const { px: X1, py: Y1, pz: Z1 } = this;
- const { px: X2, py: Y2, pz: Z2 } = other;
- let X3 = Fp.ZERO, Y3 = Fp.ZERO, Z3 = Fp.ZERO; // prettier-ignore
- const a = CURVE.a;
- const b3 = Fp.mul(CURVE.b, _3n);
- let t0 = Fp.mul(X1, X2); // step 1
- let t1 = Fp.mul(Y1, Y2);
- let t2 = Fp.mul(Z1, Z2);
- let t3 = Fp.add(X1, Y1);
- let t4 = Fp.add(X2, Y2); // step 5
- t3 = Fp.mul(t3, t4);
- t4 = Fp.add(t0, t1);
- t3 = Fp.sub(t3, t4);
- t4 = Fp.add(X1, Z1);
- let t5 = Fp.add(X2, Z2); // step 10
- t4 = Fp.mul(t4, t5);
- t5 = Fp.add(t0, t2);
- t4 = Fp.sub(t4, t5);
- t5 = Fp.add(Y1, Z1);
- X3 = Fp.add(Y2, Z2); // step 15
- t5 = Fp.mul(t5, X3);
- X3 = Fp.add(t1, t2);
- t5 = Fp.sub(t5, X3);
- Z3 = Fp.mul(a, t4);
- X3 = Fp.mul(b3, t2); // step 20
- Z3 = Fp.add(X3, Z3);
- X3 = Fp.sub(t1, Z3);
- Z3 = Fp.add(t1, Z3);
- Y3 = Fp.mul(X3, Z3);
- t1 = Fp.add(t0, t0); // step 25
- t1 = Fp.add(t1, t0);
- t2 = Fp.mul(a, t2);
- t4 = Fp.mul(b3, t4);
- t1 = Fp.add(t1, t2);
- t2 = Fp.sub(t0, t2); // step 30
- t2 = Fp.mul(a, t2);
- t4 = Fp.add(t4, t2);
- t0 = Fp.mul(t1, t4);
- Y3 = Fp.add(Y3, t0);
- t0 = Fp.mul(t5, t4); // step 35
- X3 = Fp.mul(t3, X3);
- X3 = Fp.sub(X3, t0);
- t0 = Fp.mul(t3, t1);
- Z3 = Fp.mul(t5, Z3);
- Z3 = Fp.add(Z3, t0); // step 40
- return new Point(X3, Y3, Z3);
- }
- subtract(other) {
- return this.add(other.negate());
- }
- is0() {
- return this.equals(Point.ZERO);
- }
- wNAF(n) {
- return wnaf.wNAFCached(this, pointPrecomputes, n, (comp) => {
- const toInv = Fp.invertBatch(comp.map((p) => p.pz));
- return comp.map((p, i) => p.toAffine(toInv[i])).map(Point.fromAffine);
- });
- }
- /**
- * Non-constant-time multiplication. Uses double-and-add algorithm.
- * It's faster, but should only be used when you don't care about
- * an exposed private key e.g. sig verification, which works over *public* keys.
- */
- multiplyUnsafe(n) {
- const I = Point.ZERO;
- if (n === _0n)
- return I;
- assertGE(n); // Will throw on 0
- if (n === _1n)
- return this;
- const { endo } = CURVE;
- if (!endo)
- return wnaf.unsafeLadder(this, n);
- // Apply endomorphism
- let { k1neg, k1, k2neg, k2 } = endo.splitScalar(n);
- let k1p = I;
- let k2p = I;
- let d = this;
- while (k1 > _0n || k2 > _0n) {
- if (k1 & _1n)
- k1p = k1p.add(d);
- if (k2 & _1n)
- k2p = k2p.add(d);
- d = d.double();
- k1 >>= _1n;
- k2 >>= _1n;
- }
- if (k1neg)
- k1p = k1p.negate();
- if (k2neg)
- k2p = k2p.negate();
- k2p = new Point(Fp.mul(k2p.px, endo.beta), k2p.py, k2p.pz);
- return k1p.add(k2p);
- }
- /**
- * Constant time multiplication.
- * Uses wNAF method. Windowed method may be 10% faster,
- * but takes 2x longer to generate and consumes 2x memory.
- * Uses precomputes when available.
- * Uses endomorphism for Koblitz curves.
- * @param scalar by which the point would be multiplied
- * @returns New point
- */
- multiply(scalar) {
- assertGE(scalar);
- let n = scalar;
- let point, fake; // Fake point is used to const-time mult
- const { endo } = CURVE;
- if (endo) {
- const { k1neg, k1, k2neg, k2 } = endo.splitScalar(n);
- let { p: k1p, f: f1p } = this.wNAF(k1);
- let { p: k2p, f: f2p } = this.wNAF(k2);
- k1p = wnaf.constTimeNegate(k1neg, k1p);
- k2p = wnaf.constTimeNegate(k2neg, k2p);
- k2p = new Point(Fp.mul(k2p.px, endo.beta), k2p.py, k2p.pz);
- point = k1p.add(k2p);
- fake = f1p.add(f2p);
- }
- else {
- const { p, f } = this.wNAF(n);
- point = p;
- fake = f;
- }
- // Normalize `z` for both points, but return only real one
- return Point.normalizeZ([point, fake])[0];
- }
- /**
- * Efficiently calculate `aP + bQ`. Unsafe, can expose private key, if used incorrectly.
- * Not using Strauss-Shamir trick: precomputation tables are faster.
- * The trick could be useful if both P and Q are not G (not in our case).
- * @returns non-zero affine point
- */
- multiplyAndAddUnsafe(Q, a, b) {
- const G = Point.BASE; // No Strauss-Shamir trick: we have 10% faster G precomputes
- const mul = (P, a // Select faster multiply() method
- ) => (a === _0n || a === _1n || !P.equals(G) ? P.multiplyUnsafe(a) : P.multiply(a));
- const sum = mul(this, a).add(mul(Q, b));
- return sum.is0() ? undefined : sum;
- }
- // Converts Projective point to affine (x, y) coordinates.
- // Can accept precomputed Z^-1 - for example, from invertBatch.
- // (x, y, z) ∋ (x=x/z, y=y/z)
- toAffine(iz) {
- const { px: x, py: y, pz: z } = this;
- const is0 = this.is0();
- // If invZ was 0, we return zero point. However we still want to execute
- // all operations, so we replace invZ with a random number, 1.
- if (iz == null)
- iz = is0 ? Fp.ONE : Fp.inv(z);
- const ax = Fp.mul(x, iz);
- const ay = Fp.mul(y, iz);
- const zz = Fp.mul(z, iz);
- if (is0)
- return { x: Fp.ZERO, y: Fp.ZERO };
- if (!Fp.eql(zz, Fp.ONE))
- throw new Error('invZ was invalid');
- return { x: ax, y: ay };
- }
- isTorsionFree() {
- const { h: cofactor, isTorsionFree } = CURVE;
- if (cofactor === _1n)
- return true; // No subgroups, always torsion-free
- if (isTorsionFree)
- return isTorsionFree(Point, this);
- throw new Error('isTorsionFree() has not been declared for the elliptic curve');
- }
- clearCofactor() {
- const { h: cofactor, clearCofactor } = CURVE;
- if (cofactor === _1n)
- return this; // Fast-path
- if (clearCofactor)
- return clearCofactor(Point, this);
- return this.multiplyUnsafe(CURVE.h);
- }
- toRawBytes(isCompressed = true) {
- this.assertValidity();
- return toBytes(Point, this, isCompressed);
- }
- toHex(isCompressed = true) {
- return ut.bytesToHex(this.toRawBytes(isCompressed));
- }
- }
- Point.BASE = new Point(CURVE.Gx, CURVE.Gy, Fp.ONE);
- Point.ZERO = new Point(Fp.ZERO, Fp.ONE, Fp.ZERO);
- const _bits = CURVE.nBitLength;
- const wnaf = (0, curve_js_1.wNAF)(Point, CURVE.endo ? Math.ceil(_bits / 2) : _bits);
- // Validate if generator point is on curve
- return {
- CURVE,
- ProjectivePoint: Point,
- normPrivateKeyToScalar,
- weierstrassEquation,
- isWithinCurveOrder,
- };
- }
- function validateOpts(curve) {
- const opts = (0, curve_js_1.validateBasic)(curve);
- ut.validateObject(opts, {
- hash: 'hash',
- hmac: 'function',
- randomBytes: 'function',
- }, {
- bits2int: 'function',
- bits2int_modN: 'function',
- lowS: 'boolean',
- });
- return Object.freeze({ lowS: true, ...opts });
- }
- function weierstrass(curveDef) {
- const CURVE = validateOpts(curveDef);
- const { Fp, n: CURVE_ORDER } = CURVE;
- const compressedLen = Fp.BYTES + 1; // e.g. 33 for 32
- const uncompressedLen = 2 * Fp.BYTES + 1; // e.g. 65 for 32
- function isValidFieldElement(num) {
- return _0n < num && num < Fp.ORDER; // 0 is banned since it's not invertible FE
- }
- function modN(a) {
- return mod.mod(a, CURVE_ORDER);
- }
- function invN(a) {
- return mod.invert(a, CURVE_ORDER);
- }
- const { ProjectivePoint: Point, normPrivateKeyToScalar, weierstrassEquation, isWithinCurveOrder, } = weierstrassPoints({
- ...CURVE,
- toBytes(_c, point, isCompressed) {
- const a = point.toAffine();
- const x = Fp.toBytes(a.x);
- const cat = ut.concatBytes;
- if (isCompressed) {
- return cat(Uint8Array.from([point.hasEvenY() ? 0x02 : 0x03]), x);
- }
- else {
- return cat(Uint8Array.from([0x04]), x, Fp.toBytes(a.y));
- }
- },
- fromBytes(bytes) {
- const len = bytes.length;
- const head = bytes[0];
- const tail = bytes.subarray(1);
- // this.assertValidity() is done inside of fromHex
- if (len === compressedLen && (head === 0x02 || head === 0x03)) {
- const x = ut.bytesToNumberBE(tail);
- if (!isValidFieldElement(x))
- throw new Error('Point is not on curve');
- const y2 = weierstrassEquation(x); // y² = x³ + ax + b
- let y;
- try {
- y = Fp.sqrt(y2); // y = y² ^ (p+1)/4
- }
- catch (sqrtError) {
- const suffix = sqrtError instanceof Error ? ': ' + sqrtError.message : '';
- throw new Error('Point is not on curve' + suffix);
- }
- const isYOdd = (y & _1n) === _1n;
- // ECDSA
- const isHeadOdd = (head & 1) === 1;
- if (isHeadOdd !== isYOdd)
- y = Fp.neg(y);
- return { x, y };
- }
- else if (len === uncompressedLen && head === 0x04) {
- const x = Fp.fromBytes(tail.subarray(0, Fp.BYTES));
- const y = Fp.fromBytes(tail.subarray(Fp.BYTES, 2 * Fp.BYTES));
- return { x, y };
- }
- else {
- throw new Error(`Point of length ${len} was invalid. Expected ${compressedLen} compressed bytes or ${uncompressedLen} uncompressed bytes`);
- }
- },
- });
- const numToNByteStr = (num) => ut.bytesToHex(ut.numberToBytesBE(num, CURVE.nByteLength));
- function isBiggerThanHalfOrder(number) {
- const HALF = CURVE_ORDER >> _1n;
- return number > HALF;
- }
- function normalizeS(s) {
- return isBiggerThanHalfOrder(s) ? modN(-s) : s;
- }
- // slice bytes num
- const slcNum = (b, from, to) => ut.bytesToNumberBE(b.slice(from, to));
- /**
- * ECDSA signature with its (r, s) properties. Supports DER & compact representations.
- */
- class Signature {
- constructor(r, s, recovery) {
- this.r = r;
- this.s = s;
- this.recovery = recovery;
- this.assertValidity();
- }
- // pair (bytes of r, bytes of s)
- static fromCompact(hex) {
- const l = CURVE.nByteLength;
- hex = (0, utils_js_1.ensureBytes)('compactSignature', hex, l * 2);
- return new Signature(slcNum(hex, 0, l), slcNum(hex, l, 2 * l));
- }
- // DER encoded ECDSA signature
- // https://bitcoin.stackexchange.com/questions/57644/what-are-the-parts-of-a-bitcoin-transaction-input-script
- static fromDER(hex) {
- const { r, s } = exports.DER.toSig((0, utils_js_1.ensureBytes)('DER', hex));
- return new Signature(r, s);
- }
- assertValidity() {
- // can use assertGE here
- if (!isWithinCurveOrder(this.r))
- throw new Error('r must be 0 < r < CURVE.n');
- if (!isWithinCurveOrder(this.s))
- throw new Error('s must be 0 < s < CURVE.n');
- }
- addRecoveryBit(recovery) {
- return new Signature(this.r, this.s, recovery);
- }
- recoverPublicKey(msgHash) {
- const { r, s, recovery: rec } = this;
- const h = bits2int_modN((0, utils_js_1.ensureBytes)('msgHash', msgHash)); // Truncate hash
- if (rec == null || ![0, 1, 2, 3].includes(rec))
- throw new Error('recovery id invalid');
- const radj = rec === 2 || rec === 3 ? r + CURVE.n : r;
- if (radj >= Fp.ORDER)
- throw new Error('recovery id 2 or 3 invalid');
- const prefix = (rec & 1) === 0 ? '02' : '03';
- const R = Point.fromHex(prefix + numToNByteStr(radj));
- const ir = invN(radj); // r^-1
- const u1 = modN(-h * ir); // -hr^-1
- const u2 = modN(s * ir); // sr^-1
- const Q = Point.BASE.multiplyAndAddUnsafe(R, u1, u2); // (sr^-1)R-(hr^-1)G = -(hr^-1)G + (sr^-1)
- if (!Q)
- throw new Error('point at infinify'); // unsafe is fine: no priv data leaked
- Q.assertValidity();
- return Q;
- }
- // Signatures should be low-s, to prevent malleability.
- hasHighS() {
- return isBiggerThanHalfOrder(this.s);
- }
- normalizeS() {
- return this.hasHighS() ? new Signature(this.r, modN(-this.s), this.recovery) : this;
- }
- // DER-encoded
- toDERRawBytes() {
- return ut.hexToBytes(this.toDERHex());
- }
- toDERHex() {
- return exports.DER.hexFromSig({ r: this.r, s: this.s });
- }
- // padded bytes of r, then padded bytes of s
- toCompactRawBytes() {
- return ut.hexToBytes(this.toCompactHex());
- }
- toCompactHex() {
- return numToNByteStr(this.r) + numToNByteStr(this.s);
- }
- }
- const utils = {
- isValidPrivateKey(privateKey) {
- try {
- normPrivateKeyToScalar(privateKey);
- return true;
- }
- catch (error) {
- return false;
- }
- },
- normPrivateKeyToScalar: normPrivateKeyToScalar,
- /**
- * Produces cryptographically secure private key from random of size
- * (groupLen + ceil(groupLen / 2)) with modulo bias being negligible.
- */
- randomPrivateKey: () => {
- const length = mod.getMinHashLength(CURVE.n);
- return mod.mapHashToField(CURVE.randomBytes(length), CURVE.n);
- },
- /**
- * Creates precompute table for an arbitrary EC point. Makes point "cached".
- * Allows to massively speed-up `point.multiply(scalar)`.
- * @returns cached point
- * @example
- * const fast = utils.precompute(8, ProjectivePoint.fromHex(someonesPubKey));
- * fast.multiply(privKey); // much faster ECDH now
- */
- precompute(windowSize = 8, point = Point.BASE) {
- point._setWindowSize(windowSize);
- point.multiply(BigInt(3)); // 3 is arbitrary, just need any number here
- return point;
- },
- };
- /**
- * Computes public key for a private key. Checks for validity of the private key.
- * @param privateKey private key
- * @param isCompressed whether to return compact (default), or full key
- * @returns Public key, full when isCompressed=false; short when isCompressed=true
- */
- function getPublicKey(privateKey, isCompressed = true) {
- return Point.fromPrivateKey(privateKey).toRawBytes(isCompressed);
- }
- /**
- * Quick and dirty check for item being public key. Does not validate hex, or being on-curve.
- */
- function isProbPub(item) {
- const arr = ut.isBytes(item);
- const str = typeof item === 'string';
- const len = (arr || str) && item.length;
- if (arr)
- return len === compressedLen || len === uncompressedLen;
- if (str)
- return len === 2 * compressedLen || len === 2 * uncompressedLen;
- if (item instanceof Point)
- return true;
- return false;
- }
- /**
- * ECDH (Elliptic Curve Diffie Hellman).
- * Computes shared public key from private key and public key.
- * Checks: 1) private key validity 2) shared key is on-curve.
- * Does NOT hash the result.
- * @param privateA private key
- * @param publicB different public key
- * @param isCompressed whether to return compact (default), or full key
- * @returns shared public key
- */
- function getSharedSecret(privateA, publicB, isCompressed = true) {
- if (isProbPub(privateA))
- throw new Error('first arg must be private key');
- if (!isProbPub(publicB))
- throw new Error('second arg must be public key');
- const b = Point.fromHex(publicB); // check for being on-curve
- return b.multiply(normPrivateKeyToScalar(privateA)).toRawBytes(isCompressed);
- }
- // RFC6979: ensure ECDSA msg is X bytes and < N. RFC suggests optional truncating via bits2octets.
- // FIPS 186-4 4.6 suggests the leftmost min(nBitLen, outLen) bits, which matches bits2int.
- // bits2int can produce res>N, we can do mod(res, N) since the bitLen is the same.
- // int2octets can't be used; pads small msgs with 0: unacceptatble for trunc as per RFC vectors
- const bits2int = CURVE.bits2int ||
- function (bytes) {
- // For curves with nBitLength % 8 !== 0: bits2octets(bits2octets(m)) !== bits2octets(m)
- // for some cases, since bytes.length * 8 is not actual bitLength.
- const num = ut.bytesToNumberBE(bytes); // check for == u8 done here
- const delta = bytes.length * 8 - CURVE.nBitLength; // truncate to nBitLength leftmost bits
- return delta > 0 ? num >> BigInt(delta) : num;
- };
- const bits2int_modN = CURVE.bits2int_modN ||
- function (bytes) {
- return modN(bits2int(bytes)); // can't use bytesToNumberBE here
- };
- // NOTE: pads output with zero as per spec
- const ORDER_MASK = ut.bitMask(CURVE.nBitLength);
- /**
- * Converts to bytes. Checks if num in `[0..ORDER_MASK-1]` e.g.: `[0..2^256-1]`.
- */
- function int2octets(num) {
- if (typeof num !== 'bigint')
- throw new Error('bigint expected');
- if (!(_0n <= num && num < ORDER_MASK))
- throw new Error(`bigint expected < 2^${CURVE.nBitLength}`);
- // works with order, can have different size than numToField!
- return ut.numberToBytesBE(num, CURVE.nByteLength);
- }
- // Steps A, D of RFC6979 3.2
- // Creates RFC6979 seed; converts msg/privKey to numbers.
- // Used only in sign, not in verify.
- // NOTE: we cannot assume here that msgHash has same amount of bytes as curve order, this will be wrong at least for P521.
- // Also it can be bigger for P224 + SHA256
- function prepSig(msgHash, privateKey, opts = defaultSigOpts) {
- if (['recovered', 'canonical'].some((k) => k in opts))
- throw new Error('sign() legacy options not supported');
- const { hash, randomBytes } = CURVE;
- let { lowS, prehash, extraEntropy: ent } = opts; // generates low-s sigs by default
- if (lowS == null)
- lowS = true; // RFC6979 3.2: we skip step A, because we already provide hash
- msgHash = (0, utils_js_1.ensureBytes)('msgHash', msgHash);
- if (prehash)
- msgHash = (0, utils_js_1.ensureBytes)('prehashed msgHash', hash(msgHash));
- // We can't later call bits2octets, since nested bits2int is broken for curves
- // with nBitLength % 8 !== 0. Because of that, we unwrap it here as int2octets call.
- // const bits2octets = (bits) => int2octets(bits2int_modN(bits))
- const h1int = bits2int_modN(msgHash);
- const d = normPrivateKeyToScalar(privateKey); // validate private key, convert to bigint
- const seedArgs = [int2octets(d), int2octets(h1int)];
- // extraEntropy. RFC6979 3.6: additional k' (optional).
- if (ent != null && ent !== false) {
- // K = HMAC_K(V || 0x00 || int2octets(x) || bits2octets(h1) || k')
- const e = ent === true ? randomBytes(Fp.BYTES) : ent; // generate random bytes OR pass as-is
- seedArgs.push((0, utils_js_1.ensureBytes)('extraEntropy', e)); // check for being bytes
- }
- const seed = ut.concatBytes(...seedArgs); // Step D of RFC6979 3.2
- const m = h1int; // NOTE: no need to call bits2int second time here, it is inside truncateHash!
- // Converts signature params into point w r/s, checks result for validity.
- function k2sig(kBytes) {
- // RFC 6979 Section 3.2, step 3: k = bits2int(T)
- const k = bits2int(kBytes); // Cannot use fields methods, since it is group element
- if (!isWithinCurveOrder(k))
- return; // Important: all mod() calls here must be done over N
- const ik = invN(k); // k^-1 mod n
- const q = Point.BASE.multiply(k).toAffine(); // q = Gk
- const r = modN(q.x); // r = q.x mod n
- if (r === _0n)
- return;
- // Can use scalar blinding b^-1(bm + bdr) where b ∈ [1,q−1] according to
- // https://tches.iacr.org/index.php/TCHES/article/view/7337/6509. We've decided against it:
- // a) dependency on CSPRNG b) 15% slowdown c) doesn't really help since bigints are not CT
- const s = modN(ik * modN(m + r * d)); // Not using blinding here
- if (s === _0n)
- return;
- let recovery = (q.x === r ? 0 : 2) | Number(q.y & _1n); // recovery bit (2 or 3, when q.x > n)
- let normS = s;
- if (lowS && isBiggerThanHalfOrder(s)) {
- normS = normalizeS(s); // if lowS was passed, ensure s is always
- recovery ^= 1; // // in the bottom half of N
- }
- return new Signature(r, normS, recovery); // use normS, not s
- }
- return { seed, k2sig };
- }
- const defaultSigOpts = { lowS: CURVE.lowS, prehash: false };
- const defaultVerOpts = { lowS: CURVE.lowS, prehash: false };
- /**
- * Signs message hash with a private key.
- * ```
- * sign(m, d, k) where
- * (x, y) = G × k
- * r = x mod n
- * s = (m + dr)/k mod n
- * ```
- * @param msgHash NOT message. msg needs to be hashed to `msgHash`, or use `prehash`.
- * @param privKey private key
- * @param opts lowS for non-malleable sigs. extraEntropy for mixing randomness into k. prehash will hash first arg.
- * @returns signature with recovery param
- */
- function sign(msgHash, privKey, opts = defaultSigOpts) {
- const { seed, k2sig } = prepSig(msgHash, privKey, opts); // Steps A, D of RFC6979 3.2.
- const C = CURVE;
- const drbg = ut.createHmacDrbg(C.hash.outputLen, C.nByteLength, C.hmac);
- return drbg(seed, k2sig); // Steps B, C, D, E, F, G
- }
- // Enable precomputes. Slows down first publicKey computation by 20ms.
- Point.BASE._setWindowSize(8);
- // utils.precompute(8, ProjectivePoint.BASE)
- /**
- * Verifies a signature against message hash and public key.
- * Rejects lowS signatures by default: to override,
- * specify option `{lowS: false}`. Implements section 4.1.4 from https://www.secg.org/sec1-v2.pdf:
- *
- * ```
- * verify(r, s, h, P) where
- * U1 = hs^-1 mod n
- * U2 = rs^-1 mod n
- * R = U1⋅G - U2⋅P
- * mod(R.x, n) == r
- * ```
- */
- function verify(signature, msgHash, publicKey, opts = defaultVerOpts) {
- const sg = signature;
- msgHash = (0, utils_js_1.ensureBytes)('msgHash', msgHash);
- publicKey = (0, utils_js_1.ensureBytes)('publicKey', publicKey);
- if ('strict' in opts)
- throw new Error('options.strict was renamed to lowS');
- const { lowS, prehash } = opts;
- let _sig = undefined;
- let P;
- try {
- if (typeof sg === 'string' || ut.isBytes(sg)) {
- // Signature can be represented in 2 ways: compact (2*nByteLength) & DER (variable-length).
- // Since DER can also be 2*nByteLength bytes, we check for it first.
- try {
- _sig = Signature.fromDER(sg);
- }
- catch (derError) {
- if (!(derError instanceof exports.DER.Err))
- throw derError;
- _sig = Signature.fromCompact(sg);
- }
- }
- else if (typeof sg === 'object' && typeof sg.r === 'bigint' && typeof sg.s === 'bigint') {
- const { r, s } = sg;
- _sig = new Signature(r, s);
- }
- else {
- throw new Error('PARSE');
- }
- P = Point.fromHex(publicKey);
- }
- catch (error) {
- if (error.message === 'PARSE')
- throw new Error(`signature must be Signature instance, Uint8Array or hex string`);
- return false;
- }
- if (lowS && _sig.hasHighS())
- return false;
- if (prehash)
- msgHash = CURVE.hash(msgHash);
- const { r, s } = _sig;
- const h = bits2int_modN(msgHash); // Cannot use fields methods, since it is group element
- const is = invN(s); // s^-1
- const u1 = modN(h * is); // u1 = hs^-1 mod n
- const u2 = modN(r * is); // u2 = rs^-1 mod n
- const R = Point.BASE.multiplyAndAddUnsafe(P, u1, u2)?.toAffine(); // R = u1⋅G + u2⋅P
- if (!R)
- return false;
- const v = modN(R.x);
- return v === r;
- }
- return {
- CURVE,
- getPublicKey,
- getSharedSecret,
- sign,
- verify,
- ProjectivePoint: Point,
- Signature,
- utils,
- };
- }
- /**
- * Implementation of the Shallue and van de Woestijne method for any weierstrass curve.
- * TODO: check if there is a way to merge this with uvRatio in Edwards; move to modular.
- * b = True and y = sqrt(u / v) if (u / v) is square in F, and
- * b = False and y = sqrt(Z * (u / v)) otherwise.
- * @param Fp
- * @param Z
- * @returns
- */
- function SWUFpSqrtRatio(Fp, Z) {
- // Generic implementation
- const q = Fp.ORDER;
- let l = _0n;
- for (let o = q - _1n; o % _2n === _0n; o /= _2n)
- l += _1n;
- const c1 = l; // 1. c1, the largest integer such that 2^c1 divides q - 1.
- // We need 2n ** c1 and 2n ** (c1-1). We can't use **; but we can use <<.
- // 2n ** c1 == 2n << (c1-1)
- const _2n_pow_c1_1 = _2n << (c1 - _1n - _1n);
- const _2n_pow_c1 = _2n_pow_c1_1 * _2n;
- const c2 = (q - _1n) / _2n_pow_c1; // 2. c2 = (q - 1) / (2^c1) # Integer arithmetic
- const c3 = (c2 - _1n) / _2n; // 3. c3 = (c2 - 1) / 2 # Integer arithmetic
- const c4 = _2n_pow_c1 - _1n; // 4. c4 = 2^c1 - 1 # Integer arithmetic
- const c5 = _2n_pow_c1_1; // 5. c5 = 2^(c1 - 1) # Integer arithmetic
- const c6 = Fp.pow(Z, c2); // 6. c6 = Z^c2
- const c7 = Fp.pow(Z, (c2 + _1n) / _2n); // 7. c7 = Z^((c2 + 1) / 2)
- let sqrtRatio = (u, v) => {
- let tv1 = c6; // 1. tv1 = c6
- let tv2 = Fp.pow(v, c4); // 2. tv2 = v^c4
- let tv3 = Fp.sqr(tv2); // 3. tv3 = tv2^2
- tv3 = Fp.mul(tv3, v); // 4. tv3 = tv3 * v
- let tv5 = Fp.mul(u, tv3); // 5. tv5 = u * tv3
- tv5 = Fp.pow(tv5, c3); // 6. tv5 = tv5^c3
- tv5 = Fp.mul(tv5, tv2); // 7. tv5 = tv5 * tv2
- tv2 = Fp.mul(tv5, v); // 8. tv2 = tv5 * v
- tv3 = Fp.mul(tv5, u); // 9. tv3 = tv5 * u
- let tv4 = Fp.mul(tv3, tv2); // 10. tv4 = tv3 * tv2
- tv5 = Fp.pow(tv4, c5); // 11. tv5 = tv4^c5
- let isQR = Fp.eql(tv5, Fp.ONE); // 12. isQR = tv5 == 1
- tv2 = Fp.mul(tv3, c7); // 13. tv2 = tv3 * c7
- tv5 = Fp.mul(tv4, tv1); // 14. tv5 = tv4 * tv1
- tv3 = Fp.cmov(tv2, tv3, isQR); // 15. tv3 = CMOV(tv2, tv3, isQR)
- tv4 = Fp.cmov(tv5, tv4, isQR); // 16. tv4 = CMOV(tv5, tv4, isQR)
- // 17. for i in (c1, c1 - 1, ..., 2):
- for (let i = c1; i > _1n; i--) {
- let tv5 = i - _2n; // 18. tv5 = i - 2
- tv5 = _2n << (tv5 - _1n); // 19. tv5 = 2^tv5
- let tvv5 = Fp.pow(tv4, tv5); // 20. tv5 = tv4^tv5
- const e1 = Fp.eql(tvv5, Fp.ONE); // 21. e1 = tv5 == 1
- tv2 = Fp.mul(tv3, tv1); // 22. tv2 = tv3 * tv1
- tv1 = Fp.mul(tv1, tv1); // 23. tv1 = tv1 * tv1
- tvv5 = Fp.mul(tv4, tv1); // 24. tv5 = tv4 * tv1
- tv3 = Fp.cmov(tv2, tv3, e1); // 25. tv3 = CMOV(tv2, tv3, e1)
- tv4 = Fp.cmov(tvv5, tv4, e1); // 26. tv4 = CMOV(tv5, tv4, e1)
- }
- return { isValid: isQR, value: tv3 };
- };
- if (Fp.ORDER % _4n === _3n) {
- // sqrt_ratio_3mod4(u, v)
- const c1 = (Fp.ORDER - _3n) / _4n; // 1. c1 = (q - 3) / 4 # Integer arithmetic
- const c2 = Fp.sqrt(Fp.neg(Z)); // 2. c2 = sqrt(-Z)
- sqrtRatio = (u, v) => {
- let tv1 = Fp.sqr(v); // 1. tv1 = v^2
- const tv2 = Fp.mul(u, v); // 2. tv2 = u * v
- tv1 = Fp.mul(tv1, tv2); // 3. tv1 = tv1 * tv2
- let y1 = Fp.pow(tv1, c1); // 4. y1 = tv1^c1
- y1 = Fp.mul(y1, tv2); // 5. y1 = y1 * tv2
- const y2 = Fp.mul(y1, c2); // 6. y2 = y1 * c2
- const tv3 = Fp.mul(Fp.sqr(y1), v); // 7. tv3 = y1^2; 8. tv3 = tv3 * v
- const isQR = Fp.eql(tv3, u); // 9. isQR = tv3 == u
- let y = Fp.cmov(y2, y1, isQR); // 10. y = CMOV(y2, y1, isQR)
- return { isValid: isQR, value: y }; // 11. return (isQR, y) isQR ? y : y*c2
- };
- }
- // No curves uses that
- // if (Fp.ORDER % _8n === _5n) // sqrt_ratio_5mod8
- return sqrtRatio;
- }
- /**
- * Simplified Shallue-van de Woestijne-Ulas Method
- * https://www.rfc-editor.org/rfc/rfc9380#section-6.6.2
- */
- function mapToCurveSimpleSWU(Fp, opts) {
- mod.validateField(Fp);
- if (!Fp.isValid(opts.A) || !Fp.isValid(opts.B) || !Fp.isValid(opts.Z))
- throw new Error('mapToCurveSimpleSWU: invalid opts');
- const sqrtRatio = SWUFpSqrtRatio(Fp, opts.Z);
- if (!Fp.isOdd)
- throw new Error('Fp.isOdd is not implemented!');
- // Input: u, an element of F.
- // Output: (x, y), a point on E.
- return (u) => {
- // prettier-ignore
- let tv1, tv2, tv3, tv4, tv5, tv6, x, y;
- tv1 = Fp.sqr(u); // 1. tv1 = u^2
- tv1 = Fp.mul(tv1, opts.Z); // 2. tv1 = Z * tv1
- tv2 = Fp.sqr(tv1); // 3. tv2 = tv1^2
- tv2 = Fp.add(tv2, tv1); // 4. tv2 = tv2 + tv1
- tv3 = Fp.add(tv2, Fp.ONE); // 5. tv3 = tv2 + 1
- tv3 = Fp.mul(tv3, opts.B); // 6. tv3 = B * tv3
- tv4 = Fp.cmov(opts.Z, Fp.neg(tv2), !Fp.eql(tv2, Fp.ZERO)); // 7. tv4 = CMOV(Z, -tv2, tv2 != 0)
- tv4 = Fp.mul(tv4, opts.A); // 8. tv4 = A * tv4
- tv2 = Fp.sqr(tv3); // 9. tv2 = tv3^2
- tv6 = Fp.sqr(tv4); // 10. tv6 = tv4^2
- tv5 = Fp.mul(tv6, opts.A); // 11. tv5 = A * tv6
- tv2 = Fp.add(tv2, tv5); // 12. tv2 = tv2 + tv5
- tv2 = Fp.mul(tv2, tv3); // 13. tv2 = tv2 * tv3
- tv6 = Fp.mul(tv6, tv4); // 14. tv6 = tv6 * tv4
- tv5 = Fp.mul(tv6, opts.B); // 15. tv5 = B * tv6
- tv2 = Fp.add(tv2, tv5); // 16. tv2 = tv2 + tv5
- x = Fp.mul(tv1, tv3); // 17. x = tv1 * tv3
- const { isValid, value } = sqrtRatio(tv2, tv6); // 18. (is_gx1_square, y1) = sqrt_ratio(tv2, tv6)
- y = Fp.mul(tv1, u); // 19. y = tv1 * u -> Z * u^3 * y1
- y = Fp.mul(y, value); // 20. y = y * y1
- x = Fp.cmov(x, tv3, isValid); // 21. x = CMOV(x, tv3, is_gx1_square)
- y = Fp.cmov(y, value, isValid); // 22. y = CMOV(y, y1, is_gx1_square)
- const e1 = Fp.isOdd(u) === Fp.isOdd(y); // 23. e1 = sgn0(u) == sgn0(y)
- y = Fp.cmov(Fp.neg(y), y, e1); // 24. y = CMOV(-y, y, e1)
- x = Fp.div(x, tv4); // 25. x = x / tv4
- return { x, y };
- };
- }
- //# sourceMappingURL=weierstrass.js.map
|