123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- "use strict";
- Object.defineProperty(exports, "__esModule", { value: true });
- exports.wNAF = wNAF;
- exports.validateBasic = validateBasic;
- /*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
- // Abelian group utilities
- const modular_js_1 = require("./modular.js");
- const utils_js_1 = require("./utils.js");
- const _0n = BigInt(0);
- const _1n = BigInt(1);
- // Elliptic curve multiplication of Point by scalar. Fragile.
- // Scalars should always be less than curve order: this should be checked inside of a curve itself.
- // Creates precomputation tables for fast multiplication:
- // - private scalar is split by fixed size windows of W bits
- // - every window point is collected from window's table & added to accumulator
- // - since windows are different, same point inside tables won't be accessed more than once per calc
- // - each multiplication is 'Math.ceil(CURVE_ORDER / 𝑊) + 1' point additions (fixed for any scalar)
- // - +1 window is neccessary for wNAF
- // - wNAF reduces table size: 2x less memory + 2x faster generation, but 10% slower multiplication
- // TODO: Research returning 2d JS array of windows, instead of a single window. This would allow
- // windows to be in different memory locations
- function wNAF(c, bits) {
- const constTimeNegate = (condition, item) => {
- const neg = item.negate();
- return condition ? neg : item;
- };
- const opts = (W) => {
- const windows = Math.ceil(bits / W) + 1; // +1, because
- const windowSize = 2 ** (W - 1); // -1 because we skip zero
- return { windows, windowSize };
- };
- return {
- constTimeNegate,
- // non-const time multiplication ladder
- unsafeLadder(elm, n) {
- let p = c.ZERO;
- let d = elm;
- while (n > _0n) {
- if (n & _1n)
- p = p.add(d);
- d = d.double();
- n >>= _1n;
- }
- return p;
- },
- /**
- * Creates a wNAF precomputation window. Used for caching.
- * Default window size is set by `utils.precompute()` and is equal to 8.
- * Number of precomputed points depends on the curve size:
- * 2^(𝑊−1) * (Math.ceil(𝑛 / 𝑊) + 1), where:
- * - 𝑊 is the window size
- * - 𝑛 is the bitlength of the curve order.
- * For a 256-bit curve and window size 8, the number of precomputed points is 128 * 33 = 4224.
- * @returns precomputed point tables flattened to a single array
- */
- precomputeWindow(elm, W) {
- const { windows, windowSize } = opts(W);
- const points = [];
- let p = elm;
- let base = p;
- for (let window = 0; window < windows; window++) {
- base = p;
- points.push(base);
- // =1, because we skip zero
- for (let i = 1; i < windowSize; i++) {
- base = base.add(p);
- points.push(base);
- }
- p = base.double();
- }
- return points;
- },
- /**
- * Implements ec multiplication using precomputed tables and w-ary non-adjacent form.
- * @param W window size
- * @param precomputes precomputed tables
- * @param n scalar (we don't check here, but should be less than curve order)
- * @returns real and fake (for const-time) points
- */
- wNAF(W, precomputes, n) {
- // TODO: maybe check that scalar is less than group order? wNAF behavious is undefined otherwise
- // But need to carefully remove other checks before wNAF. ORDER == bits here
- const { windows, windowSize } = opts(W);
- let p = c.ZERO;
- let f = c.BASE;
- const mask = BigInt(2 ** W - 1); // Create mask with W ones: 0b1111 for W=4 etc.
- const maxNumber = 2 ** W;
- const shiftBy = BigInt(W);
- for (let window = 0; window < windows; window++) {
- const offset = window * windowSize;
- // Extract W bits.
- let wbits = Number(n & mask);
- // Shift number by W bits.
- n >>= shiftBy;
- // If the bits are bigger than max size, we'll split those.
- // +224 => 256 - 32
- if (wbits > windowSize) {
- wbits -= maxNumber;
- n += _1n;
- }
- // This code was first written with assumption that 'f' and 'p' will never be infinity point:
- // since each addition is multiplied by 2 ** W, it cannot cancel each other. However,
- // there is negate now: it is possible that negated element from low value
- // would be the same as high element, which will create carry into next window.
- // It's not obvious how this can fail, but still worth investigating later.
- // Check if we're onto Zero point.
- // Add random point inside current window to f.
- const offset1 = offset;
- const offset2 = offset + Math.abs(wbits) - 1; // -1 because we skip zero
- const cond1 = window % 2 !== 0;
- const cond2 = wbits < 0;
- if (wbits === 0) {
- // The most important part for const-time getPublicKey
- f = f.add(constTimeNegate(cond1, precomputes[offset1]));
- }
- else {
- p = p.add(constTimeNegate(cond2, precomputes[offset2]));
- }
- }
- // JIT-compiler should not eliminate f here, since it will later be used in normalizeZ()
- // Even if the variable is still unused, there are some checks which will
- // throw an exception, so compiler needs to prove they won't happen, which is hard.
- // At this point there is a way to F be infinity-point even if p is not,
- // which makes it less const-time: around 1 bigint multiply.
- return { p, f };
- },
- wNAFCached(P, precomputesMap, n, transform) {
- // @ts-ignore
- const W = P._WINDOW_SIZE || 1;
- // Calculate precomputes on a first run, reuse them after
- let comp = precomputesMap.get(P);
- if (!comp) {
- comp = this.precomputeWindow(P, W);
- if (W !== 1) {
- precomputesMap.set(P, transform(comp));
- }
- }
- return this.wNAF(W, comp, n);
- },
- };
- }
- function validateBasic(curve) {
- (0, modular_js_1.validateField)(curve.Fp);
- (0, utils_js_1.validateObject)(curve, {
- n: 'bigint',
- h: 'bigint',
- Gx: 'field',
- Gy: 'field',
- }, {
- nBitLength: 'isSafeInteger',
- nByteLength: 'isSafeInteger',
- });
- // Set defaults
- return Object.freeze({
- ...(0, modular_js_1.nLength)(curve.n, curve.nBitLength),
- ...curve,
- ...{ p: curve.Fp.ORDER },
- });
- }
- //# sourceMappingURL=curve.js.map
|