| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288 | 
							- "use strict";
 
- Object.defineProperty(exports, "__esModule", { value: true });
 
- exports.bls = bls;
 
- const modular_js_1 = require("./modular.js");
 
- const utils_js_1 = require("./utils.js");
 
- // prettier-ignore
 
- const hash_to_curve_js_1 = require("./hash-to-curve.js");
 
- const weierstrass_js_1 = require("./weierstrass.js");
 
- // prettier-ignore
 
- const _2n = BigInt(2), _3n = BigInt(3);
 
- function bls(CURVE) {
 
-     // Fields are specific for curve, so for now we'll need to pass them with opts
 
-     const { Fp, Fr, Fp2, Fp6, Fp12 } = CURVE.fields;
 
-     const BLS_X_LEN = (0, utils_js_1.bitLen)(CURVE.params.x);
 
-     // Pre-compute coefficients for sparse multiplication
 
-     // Point addition and point double calculations is reused for coefficients
 
-     function calcPairingPrecomputes(p) {
 
-         const { x, y } = p;
 
-         // prettier-ignore
 
-         const Qx = x, Qy = y, Qz = Fp2.ONE;
 
-         // prettier-ignore
 
-         let Rx = Qx, Ry = Qy, Rz = Qz;
 
-         let ell_coeff = [];
 
-         for (let i = BLS_X_LEN - 2; i >= 0; i--) {
 
-             // Double
 
-             let t0 = Fp2.sqr(Ry); // Ry²
 
-             let t1 = Fp2.sqr(Rz); // Rz²
 
-             let t2 = Fp2.multiplyByB(Fp2.mul(t1, _3n)); // 3 * T1 * B
 
-             let t3 = Fp2.mul(t2, _3n); // 3 * T2
 
-             let t4 = Fp2.sub(Fp2.sub(Fp2.sqr(Fp2.add(Ry, Rz)), t1), t0); // (Ry + Rz)² - T1 - T0
 
-             ell_coeff.push([
 
-                 Fp2.sub(t2, t0), // T2 - T0
 
-                 Fp2.mul(Fp2.sqr(Rx), _3n), // 3 * Rx²
 
-                 Fp2.neg(t4), // -T4
 
-             ]);
 
-             Rx = Fp2.div(Fp2.mul(Fp2.mul(Fp2.sub(t0, t3), Rx), Ry), _2n); // ((T0 - T3) * Rx * Ry) / 2
 
-             Ry = Fp2.sub(Fp2.sqr(Fp2.div(Fp2.add(t0, t3), _2n)), Fp2.mul(Fp2.sqr(t2), _3n)); // ((T0 + T3) / 2)² - 3 * T2²
 
-             Rz = Fp2.mul(t0, t4); // T0 * T4
 
-             if ((0, utils_js_1.bitGet)(CURVE.params.x, i)) {
 
-                 // Addition
 
-                 let t0 = Fp2.sub(Ry, Fp2.mul(Qy, Rz)); // Ry - Qy * Rz
 
-                 let t1 = Fp2.sub(Rx, Fp2.mul(Qx, Rz)); // Rx - Qx * Rz
 
-                 ell_coeff.push([
 
-                     Fp2.sub(Fp2.mul(t0, Qx), Fp2.mul(t1, Qy)), // T0 * Qx - T1 * Qy
 
-                     Fp2.neg(t0), // -T0
 
-                     t1, // T1
 
-                 ]);
 
-                 let t2 = Fp2.sqr(t1); // T1²
 
-                 let t3 = Fp2.mul(t2, t1); // T2 * T1
 
-                 let t4 = Fp2.mul(t2, Rx); // T2 * Rx
 
-                 let t5 = Fp2.add(Fp2.sub(t3, Fp2.mul(t4, _2n)), Fp2.mul(Fp2.sqr(t0), Rz)); // T3 - 2 * T4 + T0² * Rz
 
-                 Rx = Fp2.mul(t1, t5); // T1 * T5
 
-                 Ry = Fp2.sub(Fp2.mul(Fp2.sub(t4, t5), t0), Fp2.mul(t3, Ry)); // (T4 - T5) * T0 - T3 * Ry
 
-                 Rz = Fp2.mul(Rz, t3); // Rz * T3
 
-             }
 
-         }
 
-         return ell_coeff;
 
-     }
 
-     function millerLoop(ell, g1) {
 
-         const { x } = CURVE.params;
 
-         const Px = g1[0];
 
-         const Py = g1[1];
 
-         let f12 = Fp12.ONE;
 
-         for (let j = 0, i = BLS_X_LEN - 2; i >= 0; i--, j++) {
 
-             const E = ell[j];
 
-             f12 = Fp12.multiplyBy014(f12, E[0], Fp2.mul(E[1], Px), Fp2.mul(E[2], Py));
 
-             if ((0, utils_js_1.bitGet)(x, i)) {
 
-                 j += 1;
 
-                 const F = ell[j];
 
-                 f12 = Fp12.multiplyBy014(f12, F[0], Fp2.mul(F[1], Px), Fp2.mul(F[2], Py));
 
-             }
 
-             if (i !== 0)
 
-                 f12 = Fp12.sqr(f12);
 
-         }
 
-         return Fp12.conjugate(f12);
 
-     }
 
-     const utils = {
 
-         randomPrivateKey: () => {
 
-             const length = (0, modular_js_1.getMinHashLength)(Fr.ORDER);
 
-             return (0, modular_js_1.mapHashToField)(CURVE.randomBytes(length), Fr.ORDER);
 
-         },
 
-         calcPairingPrecomputes,
 
-     };
 
-     // Point on G1 curve: (x, y)
 
-     const G1_ = (0, weierstrass_js_1.weierstrassPoints)({ n: Fr.ORDER, ...CURVE.G1 });
 
-     const G1 = Object.assign(G1_, (0, hash_to_curve_js_1.createHasher)(G1_.ProjectivePoint, CURVE.G1.mapToCurve, {
 
-         ...CURVE.htfDefaults,
 
-         ...CURVE.G1.htfDefaults,
 
-     }));
 
-     function pairingPrecomputes(point) {
 
-         const p = point;
 
-         if (p._PPRECOMPUTES)
 
-             return p._PPRECOMPUTES;
 
-         p._PPRECOMPUTES = calcPairingPrecomputes(point.toAffine());
 
-         return p._PPRECOMPUTES;
 
-     }
 
-     // TODO: export
 
-     // function clearPairingPrecomputes(point: G2) {
 
-     //   const p = point as G2 & withPairingPrecomputes;
 
-     //   p._PPRECOMPUTES = undefined;
 
-     // }
 
-     // Point on G2 curve (complex numbers): (x₁, x₂+i), (y₁, y₂+i)
 
-     const G2_ = (0, weierstrass_js_1.weierstrassPoints)({ n: Fr.ORDER, ...CURVE.G2 });
 
-     const G2 = Object.assign(G2_, (0, hash_to_curve_js_1.createHasher)(G2_.ProjectivePoint, CURVE.G2.mapToCurve, {
 
-         ...CURVE.htfDefaults,
 
-         ...CURVE.G2.htfDefaults,
 
-     }));
 
-     const { ShortSignature } = CURVE.G1;
 
-     const { Signature } = CURVE.G2;
 
-     // Calculates bilinear pairing
 
-     function pairing(Q, P, withFinalExponent = true) {
 
-         if (Q.equals(G1.ProjectivePoint.ZERO) || P.equals(G2.ProjectivePoint.ZERO))
 
-             throw new Error('pairing is not available for ZERO point');
 
-         Q.assertValidity();
 
-         P.assertValidity();
 
-         // Performance: 9ms for millerLoop and ~14ms for exp.
 
-         const Qa = Q.toAffine();
 
-         const looped = millerLoop(pairingPrecomputes(P), [Qa.x, Qa.y]);
 
-         return withFinalExponent ? Fp12.finalExponentiate(looped) : looped;
 
-     }
 
-     function normP1(point) {
 
-         return point instanceof G1.ProjectivePoint ? point : G1.ProjectivePoint.fromHex(point);
 
-     }
 
-     function normP1Hash(point, htfOpts) {
 
-         return point instanceof G1.ProjectivePoint
 
-             ? point
 
-             : G1.hashToCurve((0, utils_js_1.ensureBytes)('point', point), htfOpts);
 
-     }
 
-     function normP2(point) {
 
-         return point instanceof G2.ProjectivePoint ? point : Signature.fromHex(point);
 
-     }
 
-     function normP2Hash(point, htfOpts) {
 
-         return point instanceof G2.ProjectivePoint
 
-             ? point
 
-             : G2.hashToCurve((0, utils_js_1.ensureBytes)('point', point), htfOpts);
 
-     }
 
-     // Multiplies generator (G1) by private key.
 
-     // P = pk x G
 
-     function getPublicKey(privateKey) {
 
-         return G1.ProjectivePoint.fromPrivateKey(privateKey).toRawBytes(true);
 
-     }
 
-     // Multiplies generator (G2) by private key.
 
-     // P = pk x G
 
-     function getPublicKeyForShortSignatures(privateKey) {
 
-         return G2.ProjectivePoint.fromPrivateKey(privateKey).toRawBytes(true);
 
-     }
 
-     function sign(message, privateKey, htfOpts) {
 
-         const msgPoint = normP2Hash(message, htfOpts);
 
-         msgPoint.assertValidity();
 
-         const sigPoint = msgPoint.multiply(G1.normPrivateKeyToScalar(privateKey));
 
-         if (message instanceof G2.ProjectivePoint)
 
-             return sigPoint;
 
-         return Signature.toRawBytes(sigPoint);
 
-     }
 
-     function signShortSignature(message, privateKey, htfOpts) {
 
-         const msgPoint = normP1Hash(message, htfOpts);
 
-         msgPoint.assertValidity();
 
-         const sigPoint = msgPoint.multiply(G1.normPrivateKeyToScalar(privateKey));
 
-         if (message instanceof G1.ProjectivePoint)
 
-             return sigPoint;
 
-         return ShortSignature.toRawBytes(sigPoint);
 
-     }
 
-     // Checks if pairing of public key & hash is equal to pairing of generator & signature.
 
-     // e(P, H(m)) == e(G, S)
 
-     function verify(signature, message, publicKey, htfOpts) {
 
-         const P = normP1(publicKey);
 
-         const Hm = normP2Hash(message, htfOpts);
 
-         const G = G1.ProjectivePoint.BASE;
 
-         const S = normP2(signature);
 
-         // Instead of doing 2 exponentiations, we use property of billinear maps
 
-         // and do one exp after multiplying 2 points.
 
-         const ePHm = pairing(P.negate(), Hm, false);
 
-         const eGS = pairing(G, S, false);
 
-         const exp = Fp12.finalExponentiate(Fp12.mul(eGS, ePHm));
 
-         return Fp12.eql(exp, Fp12.ONE);
 
-     }
 
-     // Checks if pairing of public key & hash is equal to pairing of generator & signature.
 
-     // e(S, G) == e(H(m), P)
 
-     function verifyShortSignature(signature, message, publicKey, htfOpts) {
 
-         const P = normP2(publicKey);
 
-         const Hm = normP1Hash(message, htfOpts);
 
-         const G = G2.ProjectivePoint.BASE;
 
-         const S = normP1(signature);
 
-         // Instead of doing 2 exponentiations, we use property of billinear maps
 
-         // and do one exp after multiplying 2 points.
 
-         const eHmP = pairing(Hm, P, false);
 
-         const eSG = pairing(S, G.negate(), false);
 
-         const exp = Fp12.finalExponentiate(Fp12.mul(eSG, eHmP));
 
-         return Fp12.eql(exp, Fp12.ONE);
 
-     }
 
-     function aggregatePublicKeys(publicKeys) {
 
-         if (!publicKeys.length)
 
-             throw new Error('Expected non-empty array');
 
-         const agg = publicKeys.map(normP1).reduce((sum, p) => sum.add(p), G1.ProjectivePoint.ZERO);
 
-         const aggAffine = agg; //.toAffine();
 
-         if (publicKeys[0] instanceof G1.ProjectivePoint) {
 
-             aggAffine.assertValidity();
 
-             return aggAffine;
 
-         }
 
-         // toRawBytes ensures point validity
 
-         return aggAffine.toRawBytes(true);
 
-     }
 
-     function aggregateSignatures(signatures) {
 
-         if (!signatures.length)
 
-             throw new Error('Expected non-empty array');
 
-         const agg = signatures.map(normP2).reduce((sum, s) => sum.add(s), G2.ProjectivePoint.ZERO);
 
-         const aggAffine = agg; //.toAffine();
 
-         if (signatures[0] instanceof G2.ProjectivePoint) {
 
-             aggAffine.assertValidity();
 
-             return aggAffine;
 
-         }
 
-         return Signature.toRawBytes(aggAffine);
 
-     }
 
-     function aggregateShortSignatures(signatures) {
 
-         if (!signatures.length)
 
-             throw new Error('Expected non-empty array');
 
-         const agg = signatures.map(normP1).reduce((sum, s) => sum.add(s), G1.ProjectivePoint.ZERO);
 
-         const aggAffine = agg; //.toAffine();
 
-         if (signatures[0] instanceof G1.ProjectivePoint) {
 
-             aggAffine.assertValidity();
 
-             return aggAffine;
 
-         }
 
-         return ShortSignature.toRawBytes(aggAffine);
 
-     }
 
-     // https://ethresear.ch/t/fast-verification-of-multiple-bls-signatures/5407
 
-     // e(G, S) = e(G, SUM(n)(Si)) = MUL(n)(e(G, Si))
 
-     function verifyBatch(signature, messages, publicKeys, htfOpts) {
 
-         // @ts-ignore
 
-         // console.log('verifyBatch', bytesToHex(signature as any), messages, publicKeys.map(bytesToHex));
 
-         if (!messages.length)
 
-             throw new Error('Expected non-empty messages array');
 
-         if (publicKeys.length !== messages.length)
 
-             throw new Error('Pubkey count should equal msg count');
 
-         const sig = normP2(signature);
 
-         const nMessages = messages.map((i) => normP2Hash(i, htfOpts));
 
-         const nPublicKeys = publicKeys.map(normP1);
 
-         try {
 
-             const paired = [];
 
-             for (const message of new Set(nMessages)) {
 
-                 const groupPublicKey = nMessages.reduce((groupPublicKey, subMessage, i) => subMessage === message ? groupPublicKey.add(nPublicKeys[i]) : groupPublicKey, G1.ProjectivePoint.ZERO);
 
-                 // const msg = message instanceof PointG2 ? message : await PointG2.hashToCurve(message);
 
-                 // Possible to batch pairing for same msg with different groupPublicKey here
 
-                 paired.push(pairing(groupPublicKey, message, false));
 
-             }
 
-             paired.push(pairing(G1.ProjectivePoint.BASE.negate(), sig, false));
 
-             const product = paired.reduce((a, b) => Fp12.mul(a, b), Fp12.ONE);
 
-             const exp = Fp12.finalExponentiate(product);
 
-             return Fp12.eql(exp, Fp12.ONE);
 
-         }
 
-         catch {
 
-             return false;
 
-         }
 
-     }
 
-     G1.ProjectivePoint.BASE._setWindowSize(4);
 
-     return {
 
-         getPublicKey,
 
-         getPublicKeyForShortSignatures,
 
-         sign,
 
-         signShortSignature,
 
-         verify,
 
-         verifyBatch,
 
-         verifyShortSignature,
 
-         aggregatePublicKeys,
 
-         aggregateSignatures,
 
-         aggregateShortSignatures,
 
-         millerLoop,
 
-         pairing,
 
-         G1,
 
-         G2,
 
-         Signature,
 
-         ShortSignature,
 
-         fields: {
 
-             Fr,
 
-             Fp,
 
-             Fp2,
 
-             Fp6,
 
-             Fp12,
 
-         },
 
-         params: {
 
-             x: CURVE.params.x,
 
-             r: CURVE.params.r,
 
-             G1b: CURVE.G1.b,
 
-             G2b: CURVE.G2.b,
 
-         },
 
-         utils,
 
-     };
 
- }
 
- //# sourceMappingURL=bls.js.map
 
 
  |