ed448.ts 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480
  1. /*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
  2. import { shake256 } from '@noble/hashes/sha3';
  3. import { concatBytes, randomBytes, utf8ToBytes, wrapConstructor } from '@noble/hashes/utils';
  4. import { AffinePoint, Group } from './abstract/curve.js';
  5. import { ExtPointType, twistedEdwards } from './abstract/edwards.js';
  6. import { createHasher, expand_message_xof, htfBasicOpts } from './abstract/hash-to-curve.js';
  7. import { Field, isNegativeLE, mod, pow2 } from './abstract/modular.js';
  8. import { montgomery } from './abstract/montgomery.js';
  9. import {
  10. bytesToHex,
  11. bytesToNumberLE,
  12. ensureBytes,
  13. equalBytes,
  14. Hex,
  15. numberToBytesLE,
  16. } from './abstract/utils.js';
  17. /**
  18. * Edwards448 (not Ed448-Goldilocks) curve with following addons:
  19. * - X448 ECDH
  20. * - Decaf cofactor elimination
  21. * - Elligator hash-to-group / point indistinguishability
  22. * Conforms to RFC 8032 https://www.rfc-editor.org/rfc/rfc8032.html#section-5.2
  23. */
  24. const shake256_114 = wrapConstructor(() => shake256.create({ dkLen: 114 }));
  25. const shake256_64 = wrapConstructor(() => shake256.create({ dkLen: 64 }));
  26. const ed448P = BigInt(
  27. '726838724295606890549323807888004534353641360687318060281490199180612328166730772686396383698676545930088884461843637361053498018365439'
  28. );
  29. // prettier-ignore
  30. const _1n = BigInt(1), _2n = BigInt(2), _3n = BigInt(3), _4n = BigInt(4), _11n = BigInt(11);
  31. // prettier-ignore
  32. const _22n = BigInt(22), _44n = BigInt(44), _88n = BigInt(88), _223n = BigInt(223);
  33. // powPminus3div4 calculates z = x^k mod p, where k = (p-3)/4.
  34. // Used for efficient square root calculation.
  35. // ((P-3)/4).toString(2) would produce bits [223x 1, 0, 222x 1]
  36. function ed448_pow_Pminus3div4(x: bigint): bigint {
  37. const P = ed448P;
  38. const b2 = (x * x * x) % P;
  39. const b3 = (b2 * b2 * x) % P;
  40. const b6 = (pow2(b3, _3n, P) * b3) % P;
  41. const b9 = (pow2(b6, _3n, P) * b3) % P;
  42. const b11 = (pow2(b9, _2n, P) * b2) % P;
  43. const b22 = (pow2(b11, _11n, P) * b11) % P;
  44. const b44 = (pow2(b22, _22n, P) * b22) % P;
  45. const b88 = (pow2(b44, _44n, P) * b44) % P;
  46. const b176 = (pow2(b88, _88n, P) * b88) % P;
  47. const b220 = (pow2(b176, _44n, P) * b44) % P;
  48. const b222 = (pow2(b220, _2n, P) * b2) % P;
  49. const b223 = (pow2(b222, _1n, P) * x) % P;
  50. return (pow2(b223, _223n, P) * b222) % P;
  51. }
  52. function adjustScalarBytes(bytes: Uint8Array): Uint8Array {
  53. // Section 5: Likewise, for X448, set the two least significant bits of the first byte to 0, and the most
  54. // significant bit of the last byte to 1.
  55. bytes[0] &= 252; // 0b11111100
  56. // and the most significant bit of the last byte to 1.
  57. bytes[55] |= 128; // 0b10000000
  58. // NOTE: is is NOOP for 56 bytes scalars (X25519/X448)
  59. bytes[56] = 0; // Byte outside of group (456 buts vs 448 bits)
  60. return bytes;
  61. }
  62. // Constant-time ratio of u to v. Allows to combine inversion and square root u/√v.
  63. // Uses algo from RFC8032 5.1.3.
  64. function uvRatio(u: bigint, v: bigint): { isValid: boolean; value: bigint } {
  65. const P = ed448P;
  66. // https://www.rfc-editor.org/rfc/rfc8032#section-5.2.3
  67. // To compute the square root of (u/v), the first step is to compute the
  68. // candidate root x = (u/v)^((p+1)/4). This can be done using the
  69. // following trick, to use a single modular powering for both the
  70. // inversion of v and the square root:
  71. // x = (u/v)^((p+1)/4) = u³v(u⁵v³)^((p-3)/4) (mod p)
  72. const u2v = mod(u * u * v, P); // u²v
  73. const u3v = mod(u2v * u, P); // u³v
  74. const u5v3 = mod(u3v * u2v * v, P); // u⁵v³
  75. const root = ed448_pow_Pminus3div4(u5v3);
  76. const x = mod(u3v * root, P);
  77. // Verify that root is exists
  78. const x2 = mod(x * x, P); // x²
  79. // If vx² = u, the recovered x-coordinate is x. Otherwise, no
  80. // square root exists, and the decoding fails.
  81. return { isValid: mod(x2 * v, P) === u, value: x };
  82. }
  83. const Fp = Field(ed448P, 456, true);
  84. const ED448_DEF = {
  85. // Param: a
  86. a: BigInt(1),
  87. // -39081. Negative number is P - number
  88. d: BigInt(
  89. '726838724295606890549323807888004534353641360687318060281490199180612328166730772686396383698676545930088884461843637361053498018326358'
  90. ),
  91. // Finite field 𝔽p over which we'll do calculations; 2n**448n - 2n**224n - 1n
  92. Fp,
  93. // Subgroup order: how many points curve has;
  94. // 2n**446n - 13818066809895115352007386748515426880336692474882178609894547503885n
  95. n: BigInt(
  96. '181709681073901722637330951972001133588410340171829515070372549795146003961539585716195755291692375963310293709091662304773755859649779'
  97. ),
  98. // RFC 7748 has 56-byte keys, RFC 8032 has 57-byte keys
  99. nBitLength: 456,
  100. // Cofactor
  101. h: BigInt(4),
  102. // Base point (x, y) aka generator point
  103. Gx: BigInt(
  104. '224580040295924300187604334099896036246789641632564134246125461686950415467406032909029192869357953282578032075146446173674602635247710'
  105. ),
  106. Gy: BigInt(
  107. '298819210078481492676017930443930673437544040154080242095928241372331506189835876003536878655418784733982303233503462500531545062832660'
  108. ),
  109. // SHAKE256(dom4(phflag,context)||x, 114)
  110. hash: shake256_114,
  111. randomBytes,
  112. adjustScalarBytes,
  113. // dom4
  114. domain: (data: Uint8Array, ctx: Uint8Array, phflag: boolean) => {
  115. if (ctx.length > 255) throw new Error(`Context is too big: ${ctx.length}`);
  116. return concatBytes(
  117. utf8ToBytes('SigEd448'),
  118. new Uint8Array([phflag ? 1 : 0, ctx.length]),
  119. ctx,
  120. data
  121. );
  122. },
  123. uvRatio,
  124. } as const;
  125. export const ed448 = /* @__PURE__ */ twistedEdwards(ED448_DEF);
  126. // NOTE: there is no ed448ctx, since ed448 supports ctx by default
  127. export const ed448ph = /* @__PURE__ */ twistedEdwards({ ...ED448_DEF, prehash: shake256_64 });
  128. export const x448 = /* @__PURE__ */ (() =>
  129. montgomery({
  130. a: BigInt(156326),
  131. // RFC 7748 has 56-byte keys, RFC 8032 has 57-byte keys
  132. montgomeryBits: 448,
  133. nByteLength: 56,
  134. P: ed448P,
  135. Gu: BigInt(5),
  136. powPminus2: (x: bigint): bigint => {
  137. const P = ed448P;
  138. const Pminus3div4 = ed448_pow_Pminus3div4(x);
  139. const Pminus3 = pow2(Pminus3div4, BigInt(2), P);
  140. return mod(Pminus3 * x, P); // Pminus3 * x = Pminus2
  141. },
  142. adjustScalarBytes,
  143. randomBytes,
  144. }))();
  145. /**
  146. * Converts edwards448 public key to x448 public key. Uses formula:
  147. * * `(u, v) = ((y-1)/(y+1), sqrt(156324)*u/x)`
  148. * * `(x, y) = (sqrt(156324)*u/v, (1+u)/(1-u))`
  149. * @example
  150. * const aPub = ed448.getPublicKey(utils.randomPrivateKey());
  151. * x448.getSharedSecret(edwardsToMontgomery(aPub), edwardsToMontgomery(someonesPub))
  152. */
  153. export function edwardsToMontgomeryPub(edwardsPub: string | Uint8Array): Uint8Array {
  154. const { y } = ed448.ExtendedPoint.fromHex(edwardsPub);
  155. const _1n = BigInt(1);
  156. return Fp.toBytes(Fp.create((y - _1n) * Fp.inv(y + _1n)));
  157. }
  158. export const edwardsToMontgomery = edwardsToMontgomeryPub; // deprecated
  159. // TODO: add edwardsToMontgomeryPriv, similar to ed25519 version
  160. // Hash To Curve Elligator2 Map
  161. const ELL2_C1 = (Fp.ORDER - BigInt(3)) / BigInt(4); // 1. c1 = (q - 3) / 4 # Integer arithmetic
  162. const ELL2_J = BigInt(156326);
  163. function map_to_curve_elligator2_curve448(u: bigint) {
  164. let tv1 = Fp.sqr(u); // 1. tv1 = u^2
  165. let e1 = Fp.eql(tv1, Fp.ONE); // 2. e1 = tv1 == 1
  166. tv1 = Fp.cmov(tv1, Fp.ZERO, e1); // 3. tv1 = CMOV(tv1, 0, e1) # If Z * u^2 == -1, set tv1 = 0
  167. let xd = Fp.sub(Fp.ONE, tv1); // 4. xd = 1 - tv1
  168. let x1n = Fp.neg(ELL2_J); // 5. x1n = -J
  169. let tv2 = Fp.sqr(xd); // 6. tv2 = xd^2
  170. let gxd = Fp.mul(tv2, xd); // 7. gxd = tv2 * xd # gxd = xd^3
  171. let gx1 = Fp.mul(tv1, Fp.neg(ELL2_J)); // 8. gx1 = -J * tv1 # x1n + J * xd
  172. gx1 = Fp.mul(gx1, x1n); // 9. gx1 = gx1 * x1n # x1n^2 + J * x1n * xd
  173. gx1 = Fp.add(gx1, tv2); // 10. gx1 = gx1 + tv2 # x1n^2 + J * x1n * xd + xd^2
  174. gx1 = Fp.mul(gx1, x1n); // 11. gx1 = gx1 * x1n # x1n^3 + J * x1n^2 * xd + x1n * xd^2
  175. let tv3 = Fp.sqr(gxd); // 12. tv3 = gxd^2
  176. tv2 = Fp.mul(gx1, gxd); // 13. tv2 = gx1 * gxd # gx1 * gxd
  177. tv3 = Fp.mul(tv3, tv2); // 14. tv3 = tv3 * tv2 # gx1 * gxd^3
  178. let y1 = Fp.pow(tv3, ELL2_C1); // 15. y1 = tv3^c1 # (gx1 * gxd^3)^((p - 3) / 4)
  179. y1 = Fp.mul(y1, tv2); // 16. y1 = y1 * tv2 # gx1 * gxd * (gx1 * gxd^3)^((p - 3) / 4)
  180. let x2n = Fp.mul(x1n, Fp.neg(tv1)); // 17. x2n = -tv1 * x1n # x2 = x2n / xd = -1 * u^2 * x1n / xd
  181. let y2 = Fp.mul(y1, u); // 18. y2 = y1 * u
  182. y2 = Fp.cmov(y2, Fp.ZERO, e1); // 19. y2 = CMOV(y2, 0, e1)
  183. tv2 = Fp.sqr(y1); // 20. tv2 = y1^2
  184. tv2 = Fp.mul(tv2, gxd); // 21. tv2 = tv2 * gxd
  185. let e2 = Fp.eql(tv2, gx1); // 22. e2 = tv2 == gx1
  186. let xn = Fp.cmov(x2n, x1n, e2); // 23. xn = CMOV(x2n, x1n, e2) # If e2, x = x1, else x = x2
  187. let y = Fp.cmov(y2, y1, e2); // 24. y = CMOV(y2, y1, e2) # If e2, y = y1, else y = y2
  188. let e3 = Fp.isOdd(y); // 25. e3 = sgn0(y) == 1 # Fix sign of y
  189. y = Fp.cmov(y, Fp.neg(y), e2 !== e3); // 26. y = CMOV(y, -y, e2 XOR e3)
  190. return { xn, xd, yn: y, yd: Fp.ONE }; // 27. return (xn, xd, y, 1)
  191. }
  192. function map_to_curve_elligator2_edwards448(u: bigint) {
  193. let { xn, xd, yn, yd } = map_to_curve_elligator2_curve448(u); // 1. (xn, xd, yn, yd) = map_to_curve_elligator2_curve448(u)
  194. let xn2 = Fp.sqr(xn); // 2. xn2 = xn^2
  195. let xd2 = Fp.sqr(xd); // 3. xd2 = xd^2
  196. let xd4 = Fp.sqr(xd2); // 4. xd4 = xd2^2
  197. let yn2 = Fp.sqr(yn); // 5. yn2 = yn^2
  198. let yd2 = Fp.sqr(yd); // 6. yd2 = yd^2
  199. let xEn = Fp.sub(xn2, xd2); // 7. xEn = xn2 - xd2
  200. let tv2 = Fp.sub(xEn, xd2); // 8. tv2 = xEn - xd2
  201. xEn = Fp.mul(xEn, xd2); // 9. xEn = xEn * xd2
  202. xEn = Fp.mul(xEn, yd); // 10. xEn = xEn * yd
  203. xEn = Fp.mul(xEn, yn); // 11. xEn = xEn * yn
  204. xEn = Fp.mul(xEn, _4n); // 12. xEn = xEn * 4
  205. tv2 = Fp.mul(tv2, xn2); // 13. tv2 = tv2 * xn2
  206. tv2 = Fp.mul(tv2, yd2); // 14. tv2 = tv2 * yd2
  207. let tv3 = Fp.mul(yn2, _4n); // 15. tv3 = 4 * yn2
  208. let tv1 = Fp.add(tv3, yd2); // 16. tv1 = tv3 + yd2
  209. tv1 = Fp.mul(tv1, xd4); // 17. tv1 = tv1 * xd4
  210. let xEd = Fp.add(tv1, tv2); // 18. xEd = tv1 + tv2
  211. tv2 = Fp.mul(tv2, xn); // 19. tv2 = tv2 * xn
  212. let tv4 = Fp.mul(xn, xd4); // 20. tv4 = xn * xd4
  213. let yEn = Fp.sub(tv3, yd2); // 21. yEn = tv3 - yd2
  214. yEn = Fp.mul(yEn, tv4); // 22. yEn = yEn * tv4
  215. yEn = Fp.sub(yEn, tv2); // 23. yEn = yEn - tv2
  216. tv1 = Fp.add(xn2, xd2); // 24. tv1 = xn2 + xd2
  217. tv1 = Fp.mul(tv1, xd2); // 25. tv1 = tv1 * xd2
  218. tv1 = Fp.mul(tv1, xd); // 26. tv1 = tv1 * xd
  219. tv1 = Fp.mul(tv1, yn2); // 27. tv1 = tv1 * yn2
  220. tv1 = Fp.mul(tv1, BigInt(-2)); // 28. tv1 = -2 * tv1
  221. let yEd = Fp.add(tv2, tv1); // 29. yEd = tv2 + tv1
  222. tv4 = Fp.mul(tv4, yd2); // 30. tv4 = tv4 * yd2
  223. yEd = Fp.add(yEd, tv4); // 31. yEd = yEd + tv4
  224. tv1 = Fp.mul(xEd, yEd); // 32. tv1 = xEd * yEd
  225. let e = Fp.eql(tv1, Fp.ZERO); // 33. e = tv1 == 0
  226. xEn = Fp.cmov(xEn, Fp.ZERO, e); // 34. xEn = CMOV(xEn, 0, e)
  227. xEd = Fp.cmov(xEd, Fp.ONE, e); // 35. xEd = CMOV(xEd, 1, e)
  228. yEn = Fp.cmov(yEn, Fp.ONE, e); // 36. yEn = CMOV(yEn, 1, e)
  229. yEd = Fp.cmov(yEd, Fp.ONE, e); // 37. yEd = CMOV(yEd, 1, e)
  230. const inv = Fp.invertBatch([xEd, yEd]); // batch division
  231. return { x: Fp.mul(xEn, inv[0]), y: Fp.mul(yEn, inv[1]) }; // 38. return (xEn, xEd, yEn, yEd)
  232. }
  233. const htf = /* @__PURE__ */ (() =>
  234. createHasher(
  235. ed448.ExtendedPoint,
  236. (scalars: bigint[]) => map_to_curve_elligator2_edwards448(scalars[0]),
  237. {
  238. DST: 'edwards448_XOF:SHAKE256_ELL2_RO_',
  239. encodeDST: 'edwards448_XOF:SHAKE256_ELL2_NU_',
  240. p: Fp.ORDER,
  241. m: 1,
  242. k: 224,
  243. expand: 'xof',
  244. hash: shake256,
  245. }
  246. ))();
  247. export const hashToCurve = /* @__PURE__ */ (() => htf.hashToCurve)();
  248. export const encodeToCurve = /* @__PURE__ */ (() => htf.encodeToCurve)();
  249. function assertDcfPoint(other: unknown) {
  250. if (!(other instanceof DcfPoint)) throw new Error('DecafPoint expected');
  251. }
  252. // 1-d
  253. const ONE_MINUS_D = BigInt('39082');
  254. // 1-2d
  255. const ONE_MINUS_TWO_D = BigInt('78163');
  256. // √(-d)
  257. const SQRT_MINUS_D = BigInt(
  258. '98944233647732219769177004876929019128417576295529901074099889598043702116001257856802131563896515373927712232092845883226922417596214'
  259. );
  260. // 1 / √(-d)
  261. const INVSQRT_MINUS_D = BigInt(
  262. '315019913931389607337177038330951043522456072897266928557328499619017160722351061360252776265186336876723201881398623946864393857820716'
  263. );
  264. // Calculates 1/√(number)
  265. const invertSqrt = (number: bigint) => uvRatio(_1n, number);
  266. const MAX_448B = BigInt(
  267. '0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff'
  268. );
  269. const bytes448ToNumberLE = (bytes: Uint8Array) =>
  270. ed448.CURVE.Fp.create(bytesToNumberLE(bytes) & MAX_448B);
  271. type ExtendedPoint = ExtPointType;
  272. // Computes Elligator map for Decaf
  273. // https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-07#name-element-derivation-2
  274. function calcElligatorDecafMap(r0: bigint): ExtendedPoint {
  275. const { d } = ed448.CURVE;
  276. const P = ed448.CURVE.Fp.ORDER;
  277. const mod = ed448.CURVE.Fp.create;
  278. const r = mod(-(r0 * r0)); // 1
  279. const u0 = mod(d * (r - _1n)); // 2
  280. const u1 = mod((u0 + _1n) * (u0 - r)); // 3
  281. const { isValid: was_square, value: v } = uvRatio(ONE_MINUS_TWO_D, mod((r + _1n) * u1)); // 4
  282. let v_prime = v; // 5
  283. if (!was_square) v_prime = mod(r0 * v);
  284. let sgn = _1n; // 6
  285. if (!was_square) sgn = mod(-_1n);
  286. const s = mod(v_prime * (r + _1n)); // 7
  287. let s_abs = s;
  288. if (isNegativeLE(s, P)) s_abs = mod(-s);
  289. const s2 = s * s;
  290. const W0 = mod(s_abs * _2n); // 8
  291. const W1 = mod(s2 + _1n); // 9
  292. const W2 = mod(s2 - _1n); // 10
  293. const W3 = mod(v_prime * s * (r - _1n) * ONE_MINUS_TWO_D + sgn); // 11
  294. return new ed448.ExtendedPoint(mod(W0 * W3), mod(W2 * W1), mod(W1 * W3), mod(W0 * W2));
  295. }
  296. /**
  297. * Each ed448/ExtendedPoint has 4 different equivalent points. This can be
  298. * a source of bugs for protocols like ring signatures. Decaf was created to solve this.
  299. * Decaf point operates in X:Y:Z:T extended coordinates like ExtendedPoint,
  300. * but it should work in its own namespace: do not combine those two.
  301. * https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448
  302. */
  303. class DcfPoint implements Group<DcfPoint> {
  304. static BASE: DcfPoint;
  305. static ZERO: DcfPoint;
  306. // Private property to discourage combining ExtendedPoint + DecafPoint
  307. // Always use Decaf encoding/decoding instead.
  308. constructor(private readonly ep: ExtendedPoint) {}
  309. static fromAffine(ap: AffinePoint<bigint>) {
  310. return new DcfPoint(ed448.ExtendedPoint.fromAffine(ap));
  311. }
  312. /**
  313. * Takes uniform output of 112-byte hash function like shake256 and converts it to `DecafPoint`.
  314. * The hash-to-group operation applies Elligator twice and adds the results.
  315. * **Note:** this is one-way map, there is no conversion from point to hash.
  316. * https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-07#name-element-derivation-2
  317. * @param hex 112-byte output of a hash function
  318. */
  319. static hashToCurve(hex: Hex): DcfPoint {
  320. hex = ensureBytes('decafHash', hex, 112);
  321. const r1 = bytes448ToNumberLE(hex.slice(0, 56));
  322. const R1 = calcElligatorDecafMap(r1);
  323. const r2 = bytes448ToNumberLE(hex.slice(56, 112));
  324. const R2 = calcElligatorDecafMap(r2);
  325. return new DcfPoint(R1.add(R2));
  326. }
  327. /**
  328. * Converts decaf-encoded string to decaf point.
  329. * https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-07#name-decode-2
  330. * @param hex Decaf-encoded 56 bytes. Not every 56-byte string is valid decaf encoding
  331. */
  332. static fromHex(hex: Hex): DcfPoint {
  333. hex = ensureBytes('decafHex', hex, 56);
  334. const { d } = ed448.CURVE;
  335. const P = ed448.CURVE.Fp.ORDER;
  336. const mod = ed448.CURVE.Fp.create;
  337. const emsg = 'DecafPoint.fromHex: the hex is not valid encoding of DecafPoint';
  338. const s = bytes448ToNumberLE(hex);
  339. // 1. Check that s_bytes is the canonical encoding of a field element, or else abort.
  340. // 2. Check that s is non-negative, or else abort
  341. if (!equalBytes(numberToBytesLE(s, 56), hex) || isNegativeLE(s, P)) throw new Error(emsg);
  342. const s2 = mod(s * s); // 1
  343. const u1 = mod(_1n + s2); // 2
  344. const u1sq = mod(u1 * u1);
  345. const u2 = mod(u1sq - _4n * d * s2); // 3
  346. const { isValid, value: invsqrt } = invertSqrt(mod(u2 * u1sq)); // 4
  347. let u3 = mod((s + s) * invsqrt * u1 * SQRT_MINUS_D); // 5
  348. if (isNegativeLE(u3, P)) u3 = mod(-u3);
  349. const x = mod(u3 * invsqrt * u2 * INVSQRT_MINUS_D); // 6
  350. const y = mod((_1n - s2) * invsqrt * u1); // 7
  351. const t = mod(x * y); // 8
  352. if (!isValid) throw new Error(emsg);
  353. return new DcfPoint(new ed448.ExtendedPoint(x, y, _1n, t));
  354. }
  355. /**
  356. * Encodes decaf point to Uint8Array.
  357. * https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-07#name-encode-2
  358. */
  359. toRawBytes(): Uint8Array {
  360. let { ex: x, ey: _y, ez: z, et: t } = this.ep;
  361. const P = ed448.CURVE.Fp.ORDER;
  362. const mod = ed448.CURVE.Fp.create;
  363. const u1 = mod(mod(x + t) * mod(x - t)); // 1
  364. const x2 = mod(x * x);
  365. const { value: invsqrt } = invertSqrt(mod(u1 * ONE_MINUS_D * x2)); // 2
  366. let ratio = mod(invsqrt * u1 * SQRT_MINUS_D); // 3
  367. if (isNegativeLE(ratio, P)) ratio = mod(-ratio);
  368. const u2 = mod(INVSQRT_MINUS_D * ratio * z - t); // 4
  369. let s = mod(ONE_MINUS_D * invsqrt * x * u2); // 5
  370. if (isNegativeLE(s, P)) s = mod(-s);
  371. return numberToBytesLE(s, 56);
  372. }
  373. toHex(): string {
  374. return bytesToHex(this.toRawBytes());
  375. }
  376. toString(): string {
  377. return this.toHex();
  378. }
  379. // Compare one point to another.
  380. // https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-07#name-equals-2
  381. equals(other: DcfPoint): boolean {
  382. assertDcfPoint(other);
  383. const { ex: X1, ey: Y1 } = this.ep;
  384. const { ex: X2, ey: Y2 } = other.ep;
  385. const mod = ed448.CURVE.Fp.create;
  386. // (x1 * y2 == y1 * x2)
  387. return mod(X1 * Y2) === mod(Y1 * X2);
  388. }
  389. add(other: DcfPoint): DcfPoint {
  390. assertDcfPoint(other);
  391. return new DcfPoint(this.ep.add(other.ep));
  392. }
  393. subtract(other: DcfPoint): DcfPoint {
  394. assertDcfPoint(other);
  395. return new DcfPoint(this.ep.subtract(other.ep));
  396. }
  397. multiply(scalar: bigint): DcfPoint {
  398. return new DcfPoint(this.ep.multiply(scalar));
  399. }
  400. multiplyUnsafe(scalar: bigint): DcfPoint {
  401. return new DcfPoint(this.ep.multiplyUnsafe(scalar));
  402. }
  403. double(): DcfPoint {
  404. return new DcfPoint(this.ep.double());
  405. }
  406. negate(): DcfPoint {
  407. return new DcfPoint(this.ep.negate());
  408. }
  409. }
  410. export const DecafPoint = /* @__PURE__ */ (() => {
  411. // decaf448 base point is ed448 base x 2
  412. // https://github.com/dalek-cryptography/curve25519-dalek/blob/59837c6ecff02b77b9d5ff84dbc239d0cf33ef90/vendor/ristretto.sage#L699
  413. if (!DcfPoint.BASE) DcfPoint.BASE = new DcfPoint(ed448.ExtendedPoint.BASE).multiply(_2n);
  414. if (!DcfPoint.ZERO) DcfPoint.ZERO = new DcfPoint(ed448.ExtendedPoint.ZERO);
  415. return DcfPoint;
  416. })();
  417. // Hashing to decaf448. https://www.rfc-editor.org/rfc/rfc9380#appendix-C
  418. export const hashToDecaf448 = (msg: Uint8Array, options: htfBasicOpts) => {
  419. const d = options.DST;
  420. const DST = typeof d === 'string' ? utf8ToBytes(d) : d;
  421. const uniform_bytes = expand_message_xof(msg, DST, 112, 224, shake256);
  422. const P = DcfPoint.hashToCurve(uniform_bytes);
  423. return P;
  424. };
  425. export const hash_to_decaf448 = hashToDecaf448; // legacy