| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502 |
- /*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
- // BLS (Barreto-Lynn-Scott) family of pairing-friendly curves.
- import { AffinePoint } from './curve.js';
- import { IField, getMinHashLength, mapHashToField } from './modular.js';
- import { Hex, PrivKey, CHash, bitLen, bitGet, ensureBytes } from './utils.js';
- // prettier-ignore
- import {
- MapToCurve, Opts as HTFOpts, H2CPointConstructor, htfBasicOpts,
- createHasher
- } from './hash-to-curve.js';
- import {
- CurvePointsType,
- ProjPointType as ProjPointType,
- CurvePointsRes,
- weierstrassPoints,
- } from './weierstrass.js';
- /**
- * BLS (Barreto-Lynn-Scott) family of pairing-friendly curves.
- * Implements BLS (Boneh-Lynn-Shacham) signatures.
- * Consists of two curves: G1 and G2:
- * - G1 is a subgroup of (x, y) E(Fq) over y² = x³ + 4.
- * - G2 is a subgroup of ((x₁, x₂+i), (y₁, y₂+i)) E(Fq²) over y² = x³ + 4(1 + i) where i is √-1
- * - Gt, created by bilinear (ate) pairing e(G1, G2), consists of p-th roots of unity in
- * Fq^k where k is embedding degree. Only degree 12 is currently supported, 24 is not.
- * Pairing is used to aggregate and verify signatures.
- * We are using Fp for private keys (shorter) and Fp₂ for signatures (longer).
- * Some projects may prefer to swap this relation, it is not supported for now.
- **/
- type Fp = bigint; // Can be different field?
- // prettier-ignore
- const _2n = BigInt(2), _3n = BigInt(3);
- export type ShortSignatureCoder<Fp> = {
- fromHex(hex: Hex): ProjPointType<Fp>;
- toRawBytes(point: ProjPointType<Fp>): Uint8Array;
- toHex(point: ProjPointType<Fp>): string;
- };
- export type SignatureCoder<Fp2> = {
- fromHex(hex: Hex): ProjPointType<Fp2>;
- toRawBytes(point: ProjPointType<Fp2>): Uint8Array;
- toHex(point: ProjPointType<Fp2>): string;
- };
- type Fp2Bls<Fp, Fp2> = IField<Fp2> & {
- reim: (num: Fp2) => { re: Fp; im: Fp };
- multiplyByB: (num: Fp2) => Fp2;
- frobeniusMap(num: Fp2, power: number): Fp2;
- };
- type Fp12Bls<Fp2, Fp12> = IField<Fp12> & {
- frobeniusMap(num: Fp12, power: number): Fp12;
- multiplyBy014(num: Fp12, o0: Fp2, o1: Fp2, o4: Fp2): Fp12;
- conjugate(num: Fp12): Fp12;
- finalExponentiate(num: Fp12): Fp12;
- };
- export type CurveType<Fp, Fp2, Fp6, Fp12> = {
- G1: Omit<CurvePointsType<Fp>, 'n'> & {
- ShortSignature: SignatureCoder<Fp>;
- mapToCurve: MapToCurve<Fp>;
- htfDefaults: HTFOpts;
- };
- G2: Omit<CurvePointsType<Fp2>, 'n'> & {
- Signature: SignatureCoder<Fp2>;
- mapToCurve: MapToCurve<Fp2>;
- htfDefaults: HTFOpts;
- };
- fields: {
- Fp: IField<Fp>;
- Fr: IField<bigint>;
- Fp2: Fp2Bls<Fp, Fp2>;
- Fp6: IField<Fp6>;
- Fp12: Fp12Bls<Fp2, Fp12>;
- };
- params: {
- x: bigint;
- r: bigint;
- };
- htfDefaults: HTFOpts;
- hash: CHash; // Because we need outputLen for DRBG
- randomBytes: (bytesLength?: number) => Uint8Array;
- };
- export type CurveFn<Fp, Fp2, Fp6, Fp12> = {
- getPublicKey: (privateKey: PrivKey) => Uint8Array;
- getPublicKeyForShortSignatures: (privateKey: PrivKey) => Uint8Array;
- sign: {
- (message: Hex, privateKey: PrivKey, htfOpts?: htfBasicOpts): Uint8Array;
- (message: ProjPointType<Fp2>, privateKey: PrivKey, htfOpts?: htfBasicOpts): ProjPointType<Fp2>;
- };
- signShortSignature: {
- (message: Hex, privateKey: PrivKey, htfOpts?: htfBasicOpts): Uint8Array;
- (message: ProjPointType<Fp>, privateKey: PrivKey, htfOpts?: htfBasicOpts): ProjPointType<Fp>;
- };
- verify: (
- signature: Hex | ProjPointType<Fp2>,
- message: Hex | ProjPointType<Fp2>,
- publicKey: Hex | ProjPointType<Fp>,
- htfOpts?: htfBasicOpts
- ) => boolean;
- verifyShortSignature: (
- signature: Hex | ProjPointType<Fp>,
- message: Hex | ProjPointType<Fp>,
- publicKey: Hex | ProjPointType<Fp2>,
- htfOpts?: htfBasicOpts
- ) => boolean;
- verifyBatch: (
- signature: Hex | ProjPointType<Fp2>,
- messages: (Hex | ProjPointType<Fp2>)[],
- publicKeys: (Hex | ProjPointType<Fp>)[],
- htfOpts?: htfBasicOpts
- ) => boolean;
- aggregatePublicKeys: {
- (publicKeys: Hex[]): Uint8Array;
- (publicKeys: ProjPointType<Fp>[]): ProjPointType<Fp>;
- };
- aggregateSignatures: {
- (signatures: Hex[]): Uint8Array;
- (signatures: ProjPointType<Fp2>[]): ProjPointType<Fp2>;
- };
- aggregateShortSignatures: {
- (signatures: Hex[]): Uint8Array;
- (signatures: ProjPointType<Fp>[]): ProjPointType<Fp>;
- };
- millerLoop: (ell: [Fp2, Fp2, Fp2][], g1: [Fp, Fp]) => Fp12;
- pairing: (P: ProjPointType<Fp>, Q: ProjPointType<Fp2>, withFinalExponent?: boolean) => Fp12;
- G1: CurvePointsRes<Fp> & ReturnType<typeof createHasher<Fp>>;
- G2: CurvePointsRes<Fp2> & ReturnType<typeof createHasher<Fp2>>;
- Signature: SignatureCoder<Fp2>;
- ShortSignature: ShortSignatureCoder<Fp>;
- params: {
- x: bigint;
- r: bigint;
- G1b: bigint;
- G2b: Fp2;
- };
- fields: {
- Fp: IField<Fp>;
- Fp2: Fp2Bls<Fp, Fp2>;
- Fp6: IField<Fp6>;
- Fp12: Fp12Bls<Fp2, Fp12>;
- Fr: IField<bigint>;
- };
- utils: {
- randomPrivateKey: () => Uint8Array;
- calcPairingPrecomputes: (p: AffinePoint<Fp2>) => [Fp2, Fp2, Fp2][];
- };
- };
- export function bls<Fp2, Fp6, Fp12>(
- CURVE: CurveType<Fp, Fp2, Fp6, Fp12>
- ): CurveFn<Fp, Fp2, Fp6, Fp12> {
- // Fields are specific for curve, so for now we'll need to pass them with opts
- const { Fp, Fr, Fp2, Fp6, Fp12 } = CURVE.fields;
- const BLS_X_LEN = bitLen(CURVE.params.x);
- // Pre-compute coefficients for sparse multiplication
- // Point addition and point double calculations is reused for coefficients
- function calcPairingPrecomputes(p: AffinePoint<Fp2>) {
- const { x, y } = p;
- // prettier-ignore
- const Qx = x, Qy = y, Qz = Fp2.ONE;
- // prettier-ignore
- let Rx = Qx, Ry = Qy, Rz = Qz;
- let ell_coeff: [Fp2, Fp2, Fp2][] = [];
- for (let i = BLS_X_LEN - 2; i >= 0; i--) {
- // Double
- let t0 = Fp2.sqr(Ry); // Ry²
- let t1 = Fp2.sqr(Rz); // Rz²
- let t2 = Fp2.multiplyByB(Fp2.mul(t1, _3n)); // 3 * T1 * B
- let t3 = Fp2.mul(t2, _3n); // 3 * T2
- let t4 = Fp2.sub(Fp2.sub(Fp2.sqr(Fp2.add(Ry, Rz)), t1), t0); // (Ry + Rz)² - T1 - T0
- ell_coeff.push([
- Fp2.sub(t2, t0), // T2 - T0
- Fp2.mul(Fp2.sqr(Rx), _3n), // 3 * Rx²
- Fp2.neg(t4), // -T4
- ]);
- Rx = Fp2.div(Fp2.mul(Fp2.mul(Fp2.sub(t0, t3), Rx), Ry), _2n); // ((T0 - T3) * Rx * Ry) / 2
- Ry = Fp2.sub(Fp2.sqr(Fp2.div(Fp2.add(t0, t3), _2n)), Fp2.mul(Fp2.sqr(t2), _3n)); // ((T0 + T3) / 2)² - 3 * T2²
- Rz = Fp2.mul(t0, t4); // T0 * T4
- if (bitGet(CURVE.params.x, i)) {
- // Addition
- let t0 = Fp2.sub(Ry, Fp2.mul(Qy, Rz)); // Ry - Qy * Rz
- let t1 = Fp2.sub(Rx, Fp2.mul(Qx, Rz)); // Rx - Qx * Rz
- ell_coeff.push([
- Fp2.sub(Fp2.mul(t0, Qx), Fp2.mul(t1, Qy)), // T0 * Qx - T1 * Qy
- Fp2.neg(t0), // -T0
- t1, // T1
- ]);
- let t2 = Fp2.sqr(t1); // T1²
- let t3 = Fp2.mul(t2, t1); // T2 * T1
- let t4 = Fp2.mul(t2, Rx); // T2 * Rx
- let t5 = Fp2.add(Fp2.sub(t3, Fp2.mul(t4, _2n)), Fp2.mul(Fp2.sqr(t0), Rz)); // T3 - 2 * T4 + T0² * Rz
- Rx = Fp2.mul(t1, t5); // T1 * T5
- Ry = Fp2.sub(Fp2.mul(Fp2.sub(t4, t5), t0), Fp2.mul(t3, Ry)); // (T4 - T5) * T0 - T3 * Ry
- Rz = Fp2.mul(Rz, t3); // Rz * T3
- }
- }
- return ell_coeff;
- }
- function millerLoop(ell: [Fp2, Fp2, Fp2][], g1: [Fp, Fp]): Fp12 {
- const { x } = CURVE.params;
- const Px = g1[0];
- const Py = g1[1];
- let f12 = Fp12.ONE;
- for (let j = 0, i = BLS_X_LEN - 2; i >= 0; i--, j++) {
- const E = ell[j];
- f12 = Fp12.multiplyBy014(f12, E[0], Fp2.mul(E[1], Px), Fp2.mul(E[2], Py));
- if (bitGet(x, i)) {
- j += 1;
- const F = ell[j];
- f12 = Fp12.multiplyBy014(f12, F[0], Fp2.mul(F[1], Px), Fp2.mul(F[2], Py));
- }
- if (i !== 0) f12 = Fp12.sqr(f12);
- }
- return Fp12.conjugate(f12);
- }
- const utils = {
- randomPrivateKey: (): Uint8Array => {
- const length = getMinHashLength(Fr.ORDER);
- return mapHashToField(CURVE.randomBytes(length), Fr.ORDER);
- },
- calcPairingPrecomputes,
- };
- // Point on G1 curve: (x, y)
- const G1_ = weierstrassPoints({ n: Fr.ORDER, ...CURVE.G1 });
- const G1 = Object.assign(
- G1_,
- createHasher(G1_.ProjectivePoint, CURVE.G1.mapToCurve, {
- ...CURVE.htfDefaults,
- ...CURVE.G1.htfDefaults,
- })
- );
- // Sparse multiplication against precomputed coefficients
- // TODO: replace with weakmap?
- type withPairingPrecomputes = { _PPRECOMPUTES: [Fp2, Fp2, Fp2][] | undefined };
- function pairingPrecomputes(point: G2): [Fp2, Fp2, Fp2][] {
- const p = point as G2 & withPairingPrecomputes;
- if (p._PPRECOMPUTES) return p._PPRECOMPUTES;
- p._PPRECOMPUTES = calcPairingPrecomputes(point.toAffine());
- return p._PPRECOMPUTES;
- }
- // TODO: export
- // function clearPairingPrecomputes(point: G2) {
- // const p = point as G2 & withPairingPrecomputes;
- // p._PPRECOMPUTES = undefined;
- // }
- // Point on G2 curve (complex numbers): (x₁, x₂+i), (y₁, y₂+i)
- const G2_ = weierstrassPoints({ n: Fr.ORDER, ...CURVE.G2 });
- const G2 = Object.assign(
- G2_,
- createHasher(G2_.ProjectivePoint as H2CPointConstructor<Fp2>, CURVE.G2.mapToCurve, {
- ...CURVE.htfDefaults,
- ...CURVE.G2.htfDefaults,
- })
- );
- const { ShortSignature } = CURVE.G1;
- const { Signature } = CURVE.G2;
- // Calculates bilinear pairing
- function pairing(Q: G1, P: G2, withFinalExponent: boolean = true): Fp12 {
- if (Q.equals(G1.ProjectivePoint.ZERO) || P.equals(G2.ProjectivePoint.ZERO))
- throw new Error('pairing is not available for ZERO point');
- Q.assertValidity();
- P.assertValidity();
- // Performance: 9ms for millerLoop and ~14ms for exp.
- const Qa = Q.toAffine();
- const looped = millerLoop(pairingPrecomputes(P), [Qa.x, Qa.y]);
- return withFinalExponent ? Fp12.finalExponentiate(looped) : looped;
- }
- type G1 = typeof G1.ProjectivePoint.BASE;
- type G2 = typeof G2.ProjectivePoint.BASE;
- type G1Hex = Hex | G1;
- type G2Hex = Hex | G2;
- function normP1(point: G1Hex): G1 {
- return point instanceof G1.ProjectivePoint ? (point as G1) : G1.ProjectivePoint.fromHex(point);
- }
- function normP1Hash(point: G1Hex, htfOpts?: htfBasicOpts): G1 {
- return point instanceof G1.ProjectivePoint
- ? point
- : (G1.hashToCurve(ensureBytes('point', point), htfOpts) as G1);
- }
- function normP2(point: G2Hex): G2 {
- return point instanceof G2.ProjectivePoint ? point : Signature.fromHex(point);
- }
- function normP2Hash(point: G2Hex, htfOpts?: htfBasicOpts): G2 {
- return point instanceof G2.ProjectivePoint
- ? point
- : (G2.hashToCurve(ensureBytes('point', point), htfOpts) as G2);
- }
- // Multiplies generator (G1) by private key.
- // P = pk x G
- function getPublicKey(privateKey: PrivKey): Uint8Array {
- return G1.ProjectivePoint.fromPrivateKey(privateKey).toRawBytes(true);
- }
- // Multiplies generator (G2) by private key.
- // P = pk x G
- function getPublicKeyForShortSignatures(privateKey: PrivKey): Uint8Array {
- return G2.ProjectivePoint.fromPrivateKey(privateKey).toRawBytes(true);
- }
- // Executes `hashToCurve` on the message and then multiplies the result by private key.
- // S = pk x H(m)
- function sign(message: Hex, privateKey: PrivKey, htfOpts?: htfBasicOpts): Uint8Array;
- function sign(message: G2, privateKey: PrivKey, htfOpts?: htfBasicOpts): G2;
- function sign(message: G2Hex, privateKey: PrivKey, htfOpts?: htfBasicOpts): Uint8Array | G2 {
- const msgPoint = normP2Hash(message, htfOpts);
- msgPoint.assertValidity();
- const sigPoint = msgPoint.multiply(G1.normPrivateKeyToScalar(privateKey));
- if (message instanceof G2.ProjectivePoint) return sigPoint;
- return Signature.toRawBytes(sigPoint);
- }
- function signShortSignature(
- message: Hex,
- privateKey: PrivKey,
- htfOpts?: htfBasicOpts
- ): Uint8Array;
- function signShortSignature(message: G1, privateKey: PrivKey, htfOpts?: htfBasicOpts): G1;
- function signShortSignature(
- message: G1Hex,
- privateKey: PrivKey,
- htfOpts?: htfBasicOpts
- ): Uint8Array | G1 {
- const msgPoint = normP1Hash(message, htfOpts);
- msgPoint.assertValidity();
- const sigPoint = msgPoint.multiply(G1.normPrivateKeyToScalar(privateKey));
- if (message instanceof G1.ProjectivePoint) return sigPoint;
- return ShortSignature.toRawBytes(sigPoint);
- }
- // Checks if pairing of public key & hash is equal to pairing of generator & signature.
- // e(P, H(m)) == e(G, S)
- function verify(
- signature: G2Hex,
- message: G2Hex,
- publicKey: G1Hex,
- htfOpts?: htfBasicOpts
- ): boolean {
- const P = normP1(publicKey);
- const Hm = normP2Hash(message, htfOpts);
- const G = G1.ProjectivePoint.BASE;
- const S = normP2(signature);
- // Instead of doing 2 exponentiations, we use property of billinear maps
- // and do one exp after multiplying 2 points.
- const ePHm = pairing(P.negate(), Hm, false);
- const eGS = pairing(G, S, false);
- const exp = Fp12.finalExponentiate(Fp12.mul(eGS, ePHm));
- return Fp12.eql(exp, Fp12.ONE);
- }
- // Checks if pairing of public key & hash is equal to pairing of generator & signature.
- // e(S, G) == e(H(m), P)
- function verifyShortSignature(
- signature: G1Hex,
- message: G1Hex,
- publicKey: G2Hex,
- htfOpts?: htfBasicOpts
- ): boolean {
- const P = normP2(publicKey);
- const Hm = normP1Hash(message, htfOpts);
- const G = G2.ProjectivePoint.BASE;
- const S = normP1(signature);
- // Instead of doing 2 exponentiations, we use property of billinear maps
- // and do one exp after multiplying 2 points.
- const eHmP = pairing(Hm, P, false);
- const eSG = pairing(S, G.negate(), false);
- const exp = Fp12.finalExponentiate(Fp12.mul(eSG, eHmP));
- return Fp12.eql(exp, Fp12.ONE);
- }
- // Adds a bunch of public key points together.
- // pk1 + pk2 + pk3 = pkA
- function aggregatePublicKeys(publicKeys: Hex[]): Uint8Array;
- function aggregatePublicKeys(publicKeys: G1[]): G1;
- function aggregatePublicKeys(publicKeys: G1Hex[]): Uint8Array | G1 {
- if (!publicKeys.length) throw new Error('Expected non-empty array');
- const agg = publicKeys.map(normP1).reduce((sum, p) => sum.add(p), G1.ProjectivePoint.ZERO);
- const aggAffine = agg; //.toAffine();
- if (publicKeys[0] instanceof G1.ProjectivePoint) {
- aggAffine.assertValidity();
- return aggAffine;
- }
- // toRawBytes ensures point validity
- return aggAffine.toRawBytes(true);
- }
- // Adds a bunch of signature points together.
- function aggregateSignatures(signatures: Hex[]): Uint8Array;
- function aggregateSignatures(signatures: G2[]): G2;
- function aggregateSignatures(signatures: G2Hex[]): Uint8Array | G2 {
- if (!signatures.length) throw new Error('Expected non-empty array');
- const agg = signatures.map(normP2).reduce((sum, s) => sum.add(s), G2.ProjectivePoint.ZERO);
- const aggAffine = agg; //.toAffine();
- if (signatures[0] instanceof G2.ProjectivePoint) {
- aggAffine.assertValidity();
- return aggAffine;
- }
- return Signature.toRawBytes(aggAffine);
- }
- // Adds a bunch of signature points together.
- function aggregateShortSignatures(signatures: Hex[]): Uint8Array;
- function aggregateShortSignatures(signatures: G1[]): G1;
- function aggregateShortSignatures(signatures: G1Hex[]): Uint8Array | G1 {
- if (!signatures.length) throw new Error('Expected non-empty array');
- const agg = signatures.map(normP1).reduce((sum, s) => sum.add(s), G1.ProjectivePoint.ZERO);
- const aggAffine = agg; //.toAffine();
- if (signatures[0] instanceof G1.ProjectivePoint) {
- aggAffine.assertValidity();
- return aggAffine;
- }
- return ShortSignature.toRawBytes(aggAffine);
- }
- // https://ethresear.ch/t/fast-verification-of-multiple-bls-signatures/5407
- // e(G, S) = e(G, SUM(n)(Si)) = MUL(n)(e(G, Si))
- function verifyBatch(
- signature: G2Hex,
- messages: G2Hex[],
- publicKeys: G1Hex[],
- htfOpts?: htfBasicOpts
- ): boolean {
- // @ts-ignore
- // console.log('verifyBatch', bytesToHex(signature as any), messages, publicKeys.map(bytesToHex));
- if (!messages.length) throw new Error('Expected non-empty messages array');
- if (publicKeys.length !== messages.length)
- throw new Error('Pubkey count should equal msg count');
- const sig = normP2(signature);
- const nMessages = messages.map((i) => normP2Hash(i, htfOpts));
- const nPublicKeys = publicKeys.map(normP1);
- try {
- const paired = [];
- for (const message of new Set(nMessages)) {
- const groupPublicKey = nMessages.reduce(
- (groupPublicKey, subMessage, i) =>
- subMessage === message ? groupPublicKey.add(nPublicKeys[i]) : groupPublicKey,
- G1.ProjectivePoint.ZERO
- );
- // const msg = message instanceof PointG2 ? message : await PointG2.hashToCurve(message);
- // Possible to batch pairing for same msg with different groupPublicKey here
- paired.push(pairing(groupPublicKey, message, false));
- }
- paired.push(pairing(G1.ProjectivePoint.BASE.negate(), sig, false));
- const product = paired.reduce((a, b) => Fp12.mul(a, b), Fp12.ONE);
- const exp = Fp12.finalExponentiate(product);
- return Fp12.eql(exp, Fp12.ONE);
- } catch {
- return false;
- }
- }
- G1.ProjectivePoint.BASE._setWindowSize(4);
- return {
- getPublicKey,
- getPublicKeyForShortSignatures,
- sign,
- signShortSignature,
- verify,
- verifyBatch,
- verifyShortSignature,
- aggregatePublicKeys,
- aggregateSignatures,
- aggregateShortSignatures,
- millerLoop,
- pairing,
- G1,
- G2,
- Signature,
- ShortSignature,
- fields: {
- Fr,
- Fp,
- Fp2,
- Fp6,
- Fp12,
- },
- params: {
- x: CURVE.params.x,
- r: CURVE.params.r,
- G1b: CURVE.G1.b,
- G2b: CURVE.G2.b,
- },
- utils,
- };
- }
|